Physics of the Solid State
Volumes and Issues
Magnetic NiFe2O4 Nanoparticles Functionalized for Magnetic Powder Imaging (MPI)
Kamzin A. S.1, Dogan N.2, Kamzina L. S.1, Kopylov A. V.3
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics Engineering, Istanbul Technical University, Istanbul, Turkey
3RITVERC JSC, Saint-Petersburg, Russia
Email: ASKam@mail.ioffe.ru, andrkop16@mail.ru

PDF
The properties of NiFe2O4 magnetic nanoparticles (MNPs) synthesized by the hydrothermal method, as well as the dependence of the properties on the functionalization (coating) of the particles with citric or polyacrylic acids by the coprecipitation method are studied. The properties of the obtained MNPs are studied by X-ray diffractometry (XRD). The magnetic properties of the samples and the phase state of the MNPs are studied using the physical property measurement system (PPMS) and Mossbauer spectroscopy. It is found that when NiFe2O4 MNPs are functionalized, citric or polyacrylic acids cover individual particles with shells, which reduces segregation and interaction of MNPs with each other, as a result of which the nanoparticles acquire superparamagnetic properties, which is extremely necessary for the latest technique of magnetic powder visualization of human organ diseases. Keywords: NiFe2O4 ferrite-spinel magnetic nanoparticles, hydrothermal synthesis, functionalization with citric or polyacrylic acid, magnetic properties, magnetic structure, magnetic powder imaging.
  1. M. Irfan, N. Dogan, A. Bingolbali, F. Aliew. J. Magn, Magn. Mater. 537, 168150 (2021). https://doi.org/10.1016/j.jmmm.2021.168150
  2. N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko, J. Magn. Magn. Mater. 561, 169654 (2022)
  3. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Sol. State, 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
  4. A.S. Kamzin, N. Dogan, O.M. Dogan, V.G. Semenov. Phys. Solid State, 65, 8, 1373 (2023). DOI: 10.21883/PSS.2023.08.56587.127
  5. N. Dogan, G. Caliskan, M. Irfan. J Mater Sci: Mater Electron 34, 390 (2023). https://doi.org/10.1007/s10854-022-09799-x
  6. A.S. Kamzin, V.G. Semenov, L.S. Kamzina. Phys. Solid State, 66, 7, 1183 (2024). DOI: 10.61011/PSS.2024.07.58996.74
  7. B. Gleich, J. Weizenecker, Nature. 435, 1214 (2005). https://doi.org/ 10.1038/nature03808
  8. B. Gleich, Method of determining the spatial distribution of magnetic particles, Google Patents, 2010, US7778681B2
  9. Gleich, J. Weizenecker, H. Timminger, C. Bontus, I. Schmale, J. Rahmer, J. Schmidt, J. Kanzenbach, J. Borgert, inProc. ISMRM, 18, 1920 (2010)
  10. W. Li, X. Jia, L. Yin, Z. Yang, H. Hui, J. Li, W. Huang, J. Tian, S. Zhang. iLIVER 1, 237 (2022). https://doi.org/10.1016/j.iliver.2022.10.003
  11. L.C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant, M. Winter. Am J. Neuroradiol. 40, 206 (2019). https://doi.org/10.3174/ajnr.A5896
  12. M.I. Anik, M.K. Hossain, I. Hossain, A.M.U.B. Mahfuz, M.T. Rahman, I. Ahmed. Nano Select 2, 6, 1146 (2021). DOI: 10.1002/nano.202000162
  13. G.F. Stiufiuc, R.I. Appl. Sci. 14, 1623 (2024). https://doi.org/10.3390/app14041623
  14. N. Panagiotopoulos, R.L. Duschka, M. Ahlborg, G. Bringout, C. Debbeler, M. Graeser, C. Kaethner, K. Ludtke-Buzug, H. Medimagh, J. Stelzner, T.M. Buzug, J. Barkhausen, F.M. Vogt, J. Hagele. Int. J. Nanomedicine 10, 3097 (2015). https://doi.org/10.2147/ijn.S70488
  15. B. Rezaei, Z.W. Tay, S. Mostufa, O.N. Manzari, E. Azizi, S. Ciannella, H.-E-J. Moni, C. Li, M. Zeng, J. Gomez-Pastora, K. Wu. Nanosca. 16, 11802 (2024). DOI: 10.1039/d4nr01195c
  16. C. Lu, L. Han, J. Wang, J. Wan, G. Song, J. Rao. Chem. Soc. Rev. 50, 8102 (2021). https://doi.org/10.1039/D0CS00260G
  17. G.M. Abilkosomova, D.M. Aronbaev, S.D. Aronbaev. NEORGANICHESKAYA KHIMIYA. Universum: khimiya i biologiya elektron, nauchn. zhurn. 4, 55 (2024). (in Russian). DOI: 10.32743/UniChem.2024.118.4.17194
  18. J.W.M. Bulte. Adv. Drug Deliv. Rev. 138, 293 (2019). https://doi.org/10.1016/j.addr.2018.12.007
  19. B. Gleich, J. Weizenecker, J. Borgert. Phys. Med. Biol. 53, N81 (2008)
  20. B. Rezaei, P. Yari, S.M. Sanders, H. Wang, V.K. Chugh, S. Liang, S. Mostufa, K. Xu, J.-P. Wang, J. Gomez-Pastora, Small. 20, 2304848 (2023). DOI: 10.1002/smll.202304848
  21. K.S. Joshy, R. Augustine, A. Mayeen, S.M. Alex, A. Hasan, S. Thomas, H. Chi. New J. Chem. 44, 18162 (2020). DOI: 10.1039/d0nj01163k
  22. X. Lasheras, M. Insausti, I.G. de Muro, E. Garaio, F. Plazaola, M. Moros, L. De Matteis, J.M. de la Fuente, L. Lezama. J. Phys. Chem. C 120, 3492 (2016). DOI: 10.1021/acs.jpcc.5b10216
  23. M.N. Ahmad, H. Khan, L. Islam, M.H. Alnasir, S.N. Ahmad, M.T. Qureshi, M.Y. Khan. J. Mater. Phys. Sciences 4, 32 (2023). https://doi.org/10.52131/jmps.2023.0401.0034
  24. A. Muthusamy, M. Arunkumar, N. Kannapiran, S.S. Meena, S.M. Yusuf. J. Mater. Sci: Mater Electron 28, 15754 (2017). DOI: 10.1007/s10854-017-7468-3
  25. S.B. Narang, K. Pubby. J. Magn. Magn. Mater. 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163
  26. M.H. Sousa, E. Hasmonay, J. Depeyrot, F.A. Tourinho, J.-C. Bacrib, V.E. Dubois, R. Perzynski, Yu.L. Raikher. J. Magn. Magn. Mater. 242--245, 572 (2002). https://doi.org/10.52131/jmps.2023.0401.0034
  27. M.A.S. Amulya, H.P. Nagaswarupa, M.R.A. Kumar, C.R. Ravikumar, S.C. Prashantha, K.B. Kusuma. App. 1, 100023 (2020). https://doi.org/10.1016/j.apsadv.2020.100023
  28. U. Kurtan, H. Gungune s, H. Sozeri, A. Baykal. Ceram. Internat. 42, 7987 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.01.200
  29. L.M. Sanchez, D.A. Martin, V.A. Alvarez, J.S. Gonzalez. Colloids Surf., A 543, 28 (2018). https://doi.org/10.1016/j.colsurfa.2018.01.050
  30. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Technical Phys., 2022, 67, 12, 1640 (2022). DOI: 10.21883/TP.2022.12.55201.152-22
  31. M.E. de Sousa, M.B.F. van Raap, P.C. Rivas, P.M. Zelis, P. Girardin, G.A. Pasquevich, J.L. Alessandrini, D. Muraca, F.H. Sanchez. J. Phys. Chem. C 117, 5436 (2013). DOI: dx.doi.org/10.1021/jp311556b
  32. M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, P.M. Khaniabadi, B. Mehrdel. Scient. Rep. 10, 10793 (2020). https://doi.org/10.1038/s41598-020-67869-8
  33. E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercond. Novel Magn. 34, 913 (2021). DOI: 10.1007/s10948-020-05800-y
  34. Mossbauer Spectroscopy Applied to Magnetism and Materials Science. Vol. 1. Ed. G.J. Long, F. Grandjean, Springer Science+Business Media New York 1993. 479 c
  35. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience, vol. 197. Editura Academiei Romane, Bucharest, 2013
  36. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Sol. State. 64, 6, 714 (2022). DOI: 10.21883/PSS.2022.06.53838.298
  37. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Sol. State, 62, 10, 10, 1933 (2020). DOI: 10.1134/S1063783420100157
  38. V.G. Semenov, V.V. Panchuk. Programma obrabotki messbauerovskikh spectrov MossFit. Chastnoe soobshchenie. (in Russian)
  39. D.-H. Chen, X.-R. He. Mater. Res. Bull. 36, 1369 (2001)
  40. R. Malik, S. Annapoorni, S. Lamba, V.R. Reddy, A. Gupta, P. Sharma, A. Inoue. J. Magn. Magn. Mater. 322, 3742 (2010). doi: 10.1016/j.jmmm.2010.07.019
  41. L.K. Bogart, I.G. Morozov, I.P. Parkin, M.V. Kuznetcov. J. Mater. Sci.: Mater. Electron. 29, 14347 (2018). https://doi.org/10.1007/s10854-018-9569-z
  42. J. Jacob, M.A. Khadar. J. Appl. Phys. 107, 114310 (2010). http://dx.doi.org/10.1063/1.3429202
  43. U. Holzwarth, N. Gibson. Nature Nanotechnology 6, 534 (2011)
  44. M. Siddique, N.M. Butt. Physica B 405, 4211 (2010). doi: 10.1016/j.physb.2010.07.012
  45. V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, K.D. Becker. J. Phys. Chem. C 111, 5026 (2007). DOI: 10.1021/jp067620s
  46. A.P. Kazin, M.N. Rumyantseva, V.E. Prusakov, I.P. Suzdalev, Yu.V. Maksimov, V.K. Imshennik, S.V. Novichikhin, A.M. Gas'kov. Neorganich. Mater. 45, 11, 1381 (2010). (in Russian)
  47. Magnetic Properties of Fine Particles. Ed. J.L. Dormann, D. Fiorani. Elsevier Science Ltd. Series: North-Holland Delta 2012. 430 p
  48. S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Internat. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09.081
  49. E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya. J. Appl. Phys. 99, 083908 (2006)
  50. J.M.D. Coey. Phys. Rev. Lett. 27, 1140 (1971)
  51. S. Morup, C.A. Oxborrow, P.V. Hendriksen, M.S. Pedersen, M. Hanson, C. Johansson. J. Magn. Magn. Mater. 140--144, 409 (1995). https://doi.org/10.1016/0304-8853(94)00963-5
  52. M. Menzel, V. Sepelak, K.D. Becker. Sol. St. Ionics. 141, 663 (2001)
  53. A. Bajorek, C. Berger, M. DulskI, M. Zubko, S. Lewinska, K. PrusiK, A.S. Lawska-Waniewska, F. Grasset, N. Randrianantoandro. Metallurg. Mater. Transac. A 53A, 1208 (2022). https://doi.org/10.1007/s11661-021-06567-0
  54. B. Pacakova, S. Kubickova, G. Salas, A. Mantlikova, M. Marciello, M.P. Morales, D. Niznansky, J. Vejpravova. Nanoscale 9, 5129 (2017). DOI: 10.1039/x0xx00000x
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru