Magnetic NiFe2O4 Nanoparticles Functionalized for Magnetic Powder Imaging (MPI)
Kamzin A. S.1, Dogan N.2, Kamzina L. S.1, Kopylov A. V.3
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics Engineering, Istanbul Technical University, Istanbul, Turkey
3RITVERC JSC, Saint-Petersburg, Russia
Email: ASKam@mail.ioffe.ru, andrkop16@mail.ru
The properties of NiFe2O4 magnetic nanoparticles (MNPs) synthesized by the hydrothermal method, as well as the dependence of the properties on the functionalization (coating) of the particles with citric or polyacrylic acids by the coprecipitation method are studied. The properties of the obtained MNPs are studied by X-ray diffractometry (XRD). The magnetic properties of the samples and the phase state of the MNPs are studied using the physical property measurement system (PPMS) and Mossbauer spectroscopy. It is found that when NiFe2O4 MNPs are functionalized, citric or polyacrylic acids cover individual particles with shells, which reduces segregation and interaction of MNPs with each other, as a result of which the nanoparticles acquire superparamagnetic properties, which is extremely necessary for the latest technique of magnetic powder visualization of human organ diseases. Keywords: NiFe2O4 ferrite-spinel magnetic nanoparticles, hydrothermal synthesis, functionalization with citric or polyacrylic acid, magnetic properties, magnetic structure, magnetic powder imaging.
- M. Irfan, N. Dogan, A. Bingolbali, F. Aliew. J. Magn, Magn. Mater. 537, 168150 (2021). https://doi.org/10.1016/j.jmmm.2021.168150
- N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko, J. Magn. Magn. Mater. 561, 169654 (2022)
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Sol. State, 64, 10, 1550 (2022). DOI: 10.21883/PSS.2022.10.54249.391
- A.S. Kamzin, N. Dogan, O.M. Dogan, V.G. Semenov. Phys. Solid State, 65, 8, 1373 (2023). DOI: 10.21883/PSS.2023.08.56587.127
- N. Dogan, G. Caliskan, M. Irfan. J Mater Sci: Mater Electron 34, 390 (2023). https://doi.org/10.1007/s10854-022-09799-x
- A.S. Kamzin, V.G. Semenov, L.S. Kamzina. Phys. Solid State, 66, 7, 1183 (2024). DOI: 10.61011/PSS.2024.07.58996.74
- B. Gleich, J. Weizenecker, Nature. 435, 1214 (2005). https://doi.org/ 10.1038/nature03808
- B. Gleich, Method of determining the spatial distribution of magnetic particles, Google Patents, 2010, US7778681B2
- Gleich, J. Weizenecker, H. Timminger, C. Bontus, I. Schmale, J. Rahmer, J. Schmidt, J. Kanzenbach, J. Borgert, inProc. ISMRM, 18, 1920 (2010)
- W. Li, X. Jia, L. Yin, Z. Yang, H. Hui, J. Li, W. Huang, J. Tian, S. Zhang. iLIVER 1, 237 (2022). https://doi.org/10.1016/j.iliver.2022.10.003
- L.C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant, M. Winter. Am J. Neuroradiol. 40, 206 (2019). https://doi.org/10.3174/ajnr.A5896
- M.I. Anik, M.K. Hossain, I. Hossain, A.M.U.B. Mahfuz, M.T. Rahman, I. Ahmed. Nano Select 2, 6, 1146 (2021). DOI: 10.1002/nano.202000162
- G.F. Stiufiuc, R.I. Appl. Sci. 14, 1623 (2024). https://doi.org/10.3390/app14041623
- N. Panagiotopoulos, R.L. Duschka, M. Ahlborg, G. Bringout, C. Debbeler, M. Graeser, C. Kaethner, K. Ludtke-Buzug, H. Medimagh, J. Stelzner, T.M. Buzug, J. Barkhausen, F.M. Vogt, J. Hagele. Int. J. Nanomedicine 10, 3097 (2015). https://doi.org/10.2147/ijn.S70488
- B. Rezaei, Z.W. Tay, S. Mostufa, O.N. Manzari, E. Azizi, S. Ciannella, H.-E-J. Moni, C. Li, M. Zeng, J. Gomez-Pastora, K. Wu. Nanosca. 16, 11802 (2024). DOI: 10.1039/d4nr01195c
- C. Lu, L. Han, J. Wang, J. Wan, G. Song, J. Rao. Chem. Soc. Rev. 50, 8102 (2021). https://doi.org/10.1039/D0CS00260G
- G.M. Abilkosomova, D.M. Aronbaev, S.D. Aronbaev. NEORGANICHESKAYA KHIMIYA. Universum: khimiya i biologiya elektron, nauchn. zhurn. 4, 55 (2024). (in Russian). DOI: 10.32743/UniChem.2024.118.4.17194
- J.W.M. Bulte. Adv. Drug Deliv. Rev. 138, 293 (2019). https://doi.org/10.1016/j.addr.2018.12.007
- B. Gleich, J. Weizenecker, J. Borgert. Phys. Med. Biol. 53, N81 (2008)
- B. Rezaei, P. Yari, S.M. Sanders, H. Wang, V.K. Chugh, S. Liang, S. Mostufa, K. Xu, J.-P. Wang, J. Gomez-Pastora, Small. 20, 2304848 (2023). DOI: 10.1002/smll.202304848
- K.S. Joshy, R. Augustine, A. Mayeen, S.M. Alex, A. Hasan, S. Thomas, H. Chi. New J. Chem. 44, 18162 (2020). DOI: 10.1039/d0nj01163k
- X. Lasheras, M. Insausti, I.G. de Muro, E. Garaio, F. Plazaola, M. Moros, L. De Matteis, J.M. de la Fuente, L. Lezama. J. Phys. Chem. C 120, 3492 (2016). DOI: 10.1021/acs.jpcc.5b10216
- M.N. Ahmad, H. Khan, L. Islam, M.H. Alnasir, S.N. Ahmad, M.T. Qureshi, M.Y. Khan. J. Mater. Phys. Sciences 4, 32 (2023). https://doi.org/10.52131/jmps.2023.0401.0034
- A. Muthusamy, M. Arunkumar, N. Kannapiran, S.S. Meena, S.M. Yusuf. J. Mater. Sci: Mater Electron 28, 15754 (2017). DOI: 10.1007/s10854-017-7468-3
- S.B. Narang, K. Pubby. J. Magn. Magn. Mater. 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163
- M.H. Sousa, E. Hasmonay, J. Depeyrot, F.A. Tourinho, J.-C. Bacrib, V.E. Dubois, R. Perzynski, Yu.L. Raikher. J. Magn. Magn. Mater. 242--245, 572 (2002). https://doi.org/10.52131/jmps.2023.0401.0034
- M.A.S. Amulya, H.P. Nagaswarupa, M.R.A. Kumar, C.R. Ravikumar, S.C. Prashantha, K.B. Kusuma. App. 1, 100023 (2020). https://doi.org/10.1016/j.apsadv.2020.100023
- U. Kurtan, H. Gungune s, H. Sozeri, A. Baykal. Ceram. Internat. 42, 7987 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.01.200
- L.M. Sanchez, D.A. Martin, V.A. Alvarez, J.S. Gonzalez. Colloids Surf., A 543, 28 (2018). https://doi.org/10.1016/j.colsurfa.2018.01.050
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Technical Phys., 2022, 67, 12, 1640 (2022). DOI: 10.21883/TP.2022.12.55201.152-22
- M.E. de Sousa, M.B.F. van Raap, P.C. Rivas, P.M. Zelis, P. Girardin, G.A. Pasquevich, J.L. Alessandrini, D. Muraca, F.H. Sanchez. J. Phys. Chem. C 117, 5436 (2013). DOI: dx.doi.org/10.1021/jp311556b
- M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, P.M. Khaniabadi, B. Mehrdel. Scient. Rep. 10, 10793 (2020). https://doi.org/10.1038/s41598-020-67869-8
- E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercond. Novel Magn. 34, 913 (2021). DOI: 10.1007/s10948-020-05800-y
- Mossbauer Spectroscopy Applied to Magnetism and Materials Science. Vol. 1. Ed. G.J. Long, F. Grandjean, Springer Science+Business Media New York 1993. 479 c
- V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience, vol. 197. Editura Academiei Romane, Bucharest, 2013
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Sol. State. 64, 6, 714 (2022). DOI: 10.21883/PSS.2022.06.53838.298
- A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Sol. State, 62, 10, 10, 1933 (2020). DOI: 10.1134/S1063783420100157
- V.G. Semenov, V.V. Panchuk. Programma obrabotki messbauerovskikh spectrov MossFit. Chastnoe soobshchenie. (in Russian)
- D.-H. Chen, X.-R. He. Mater. Res. Bull. 36, 1369 (2001)
- R. Malik, S. Annapoorni, S. Lamba, V.R. Reddy, A. Gupta, P. Sharma, A. Inoue. J. Magn. Magn. Mater. 322, 3742 (2010). doi: 10.1016/j.jmmm.2010.07.019
- L.K. Bogart, I.G. Morozov, I.P. Parkin, M.V. Kuznetcov. J. Mater. Sci.: Mater. Electron. 29, 14347 (2018). https://doi.org/10.1007/s10854-018-9569-z
- J. Jacob, M.A. Khadar. J. Appl. Phys. 107, 114310 (2010). http://dx.doi.org/10.1063/1.3429202
- U. Holzwarth, N. Gibson. Nature Nanotechnology 6, 534 (2011)
- M. Siddique, N.M. Butt. Physica B 405, 4211 (2010). doi: 10.1016/j.physb.2010.07.012
- V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, K.D. Becker. J. Phys. Chem. C 111, 5026 (2007). DOI: 10.1021/jp067620s
- A.P. Kazin, M.N. Rumyantseva, V.E. Prusakov, I.P. Suzdalev, Yu.V. Maksimov, V.K. Imshennik, S.V. Novichikhin, A.M. Gas'kov. Neorganich. Mater. 45, 11, 1381 (2010). (in Russian)
- Magnetic Properties of Fine Particles. Ed. J.L. Dormann, D. Fiorani. Elsevier Science Ltd. Series: North-Holland Delta 2012. 430 p
- S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Internat. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09.081
- E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya. J. Appl. Phys. 99, 083908 (2006)
- J.M.D. Coey. Phys. Rev. Lett. 27, 1140 (1971)
- S. Morup, C.A. Oxborrow, P.V. Hendriksen, M.S. Pedersen, M. Hanson, C. Johansson. J. Magn. Magn. Mater. 140--144, 409 (1995). https://doi.org/10.1016/0304-8853(94)00963-5
- M. Menzel, V. Sepelak, K.D. Becker. Sol. St. Ionics. 141, 663 (2001)
- A. Bajorek, C. Berger, M. DulskI, M. Zubko, S. Lewinska, K. PrusiK, A.S. Lawska-Waniewska, F. Grasset, N. Randrianantoandro. Metallurg. Mater. Transac. A 53A, 1208 (2022). https://doi.org/10.1007/s11661-021-06567-0
- B. Pacakova, S. Kubickova, G. Salas, A. Mantlikova, M. Marciello, M.P. Morales, D. Niznansky, J. Vejpravova. Nanoscale 9, 5129 (2017). DOI: 10.1039/x0xx00000x