Physics of the Solid State
Volumes and Issues
Nutation resonance in different states of an antiferromagnet switched by an external magnetic field
Titov Sergei V. 1, Fedorov Andrey S. 2,3, Titov Anton S. 3, Chukashev Nikolay V. 3
1Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
3Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
Email: pashkin1212@yandex.ru, Fedorov.Andrei@phystech.edu, titov.as@phystech.edu, chukashev.nv@phystech.edu

PDF
The results of a study of nutation resonances caused by the magnetization inertia of an antiferromagnet with two sublattices, possessing uniaxial magnetocrystalline anisotropy, are presented. Analytical expressions for the eigenfrequencies of the antiferromagnet are obtained by linearizing the system of coupled inertial Landau-Lifshitz-Gilbert equations describing the dynamics of the sublattice magnetizations. Various states of the antiferromagnet determined by the magnitude of the external magnetic field are considered for longitudinal (along the easy axis) and transverse directions of the field. The effect of dissipation in the system on the half-widths of the nutation resonance lines is demonstrated. Keywords: antiferromagnet, ferromagnet, nutation resonance, antiferromagnetic resonance, Landau-Lifshitz-Gilbert equation, magnetization inertia, uniaxial magnetocrystalline anisotropy.
  1. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich. Nat. Nanotechnol. 11, 231 (2016). https://doi.org/10.1038/nnano.2016.18
  2. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005
  3. M. Jungfleisch, W. Zhang, A. Hoffmann. Phys. Lett. A 382, 865 (2018). https://doi.org/10.1016/j.physleta.2018.01.008
  4. Y.L. Raikher, V.I. Stepanov. ZhETF, 134, 514 (2008). (in Russian). https://doi.org/10.1134/S1063776108090112
  5. P. Nvcmec, M. Fiebig, T. Kampfrath, A.V. Kimel. Nat. Phys. 14, 229 (2018). https://doi.org/10.1038/s41567-018-0051-x
  6. A.G. Gurevich. Magnitnyi rezonans v ferritakh i antiferomagnetikakh. (Nauka, M. (1973). (in Russian)
  7. L.D. Landau. Phys. Zs. Sowjet 4, 675 (1933). https://elib.biblioatom.ru/text/landau_sobranie-trudov_t1_1969/p100/
  8. L. Neel. C.R. Hebd. Seances Acad. Sci. 252, 4075 (1961). https://hal.science/hal-02878431/document
  9. L. Neel. C.R. Hebd. Seances Acad. Sci. 253, 9 (1961). https://hal.science/hal-02878448v1/file/Doc.pdf
  10. L. Neel. C.R. Hebd. Seances Acad. Sci. 253, 203 (1961). https://hal.science/hal-02878449/document
  11. L. Neel. C.R. Hebd. Seances Acad. Sci. 253, 1286 (1961). https://hal.science/hal-02878450
  12. Handbook of Terahertz Technology for Imaging, Sensing and Communications / Ed. D. Saeedkia. Woodhead Publ. Lim., Sawston (2013)
  13. J.-Y. Bigot, M. Vomir, E. Beaurepaire. Nat. Phys. 5, 515 (2009). https://doi.org/10.1038/nphys1285
  14. C.D. Stanciu, A. Tsukamoto, A.V. Kimel, F. Hansteen, A. Kirilyuk, A. Itoh, Th. Rasing. Phys. Rev. Lett. 99, 217204 (2007). https://doi.org/10.1103/PhysRevLett.99.217204
  15. S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlr, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, E.E. Fullerton. Nature Mater 13, 286 (2014). https://doi.org/10.1038/nmat3864
  16. A. Kimel, B. Ivanov, R. Pisarev, P.A. Usachev, A. Kirilyuk, Th. Rasing. Nature Phys. 5, 727 (2009). https://doi.org/10.1038/nphys1369
  17. S. Wienholdt, D. Hinzke, U. Nowak. Phys. Rev. Lett. 108, 247207 (2012). https://doi.org/10.1103/PhysRevLett.108.247207
  18. M.-C. Ciornei, J.M. Rubi, J.-E. Wegrowe. Phys. Rev. B 83, 020410(R) (2011). https://doi.org/10.1103/PhysRevB.83.020410
  19. J.-E. Wegrowe, M.-C. Ciornei. Amer. J. Phys. 80, 607 (2012). https://doi.org/10.1119/1.4709188
  20. D. Bottcher, J. Henk. Phys. Rev. B 86, 020404(R) (2012). https://doi.org/10.1103/PhysRevB.86.020404
  21. S. Giordano, P.-M. Dejardin. Phys. Rev. B 102, 214406 (2020). https://doi.org/10.1103/PhysRevB.102.214406
  22. E. Olive, Y. Lansac, J.-E. Wegrowe. Appl. Phys. Lett. 100, 192407 (2012). https://doi.org/10.1063/1.4712056
  23. S.V. Titov, W.J. Dowling, Yu.P. Kalmykov. J. Appl. Phys. 131, 193901 (2022). https://doi.org/10.1063/5.0093226
  24. M. Cherkasskii, M. Farle, A. Semisalova. Phys. Rev. B 102, 184432 (2020). https://doi.org/10.1103/PhysRevB.102.184432
  25. S. Ghosh, M. Cherkasskii, I. Barsukov, R. Mondal, Theory of tensorial magnetic inertia in terahertz spin dynamics (2024). https://doi.org/10.48550/arXiv.2408.15594
  26. R. Mondal, S. Grob enbach, L. Rozsa, U. Nowak. Phys. Rev. B 103, 104404 (2021). https://doi.org/10.1103/PhysRevB.103.104404
  27. S.V. Titov, W.J. Dowling, A.S. Titov, A.S. Fedorov. J. Appl. Phys. 135, 093903 (2024). https://doi.org/10.1063/5.0196622
  28. M. Cherkasskii, M. Farle, A. Semisalova. Phys. Rev. B, 103, 174435 (2021). https://doi.org/10.1103/PhysRevB.103.174435
  29. A.M. Lomonosov, V.V. Temnov, J.-E. Wegrowe. Phys. Rev. B, 104, 054425 (2021). https://doi.org/10.1103/PhysRevB.104.054425
  30. S.V. Titov, W.J. Dowling, Y.P. Kalmykov, M. Cherkasskii. Phys. Rev. B, 105, 214414 (2022). https://doi.org/10.1103/PhysRevB.105.214414
  31. R. Mondal, L. Rozsa. Phys. Rev. B 106, 134422 (2022). https://doi.org/10.1103/PhysRevB.106.134422
  32. K. Neeraj, N. Awari, S. Kovalev, D. Polley, N.Z. Hagstrom, S.S.P.K. Arekapudi, A. Semisalova, K. Lenz, B. Green, J.-C. Deinert, I. Ilyakov, M. Chen, M. Bowatna, V. Scalera, M. D'Aquino, C. Serpico, O. Hellwig, J.-E. Wegrowe, M. Gensch, S. Bonetti. Nat. Phys. 17, 245 (2021). https://doi.org/10.1038/s41567-020-01040-y
  33. A. De, J. Schlegel, A. Lentfert, L. Scheuer, B. Stadtmuller, P. Pirro, G. von Freymann, U. Nowak, M. Aeschlimann. Nutation: separating the spin from its magnetic moment (2024). https://doi.org/10.48550/arXiv.2405.01334
  34. V. Unikandanunni, R. Medapalli, M. Asa, E. Albisetti, D. Petti, R. Bertacco, E.E. Fullerton, S. Bonetti. Phys. Rev. Lett. 129, 237201 (2022). https://doi.org/10.1103/PhysRevLett.129.237201
  35. D. Thonig, O. Eriksson, and M. Pereiro, Sci. Rep. 7, 931 (2017). https://doi.org/10.1038/s41598-017-01081-z
  36. M. Fahnle, D. Steiauf, C. Illg. Phys. Rev. B 84, 172403 (2011). https://doi.org/10.1103/PhysRevB.84.172403
  37. S. Bhattacharjee, L. Nordstrom, J. Fransson. Phys. Rev. Lett. 108, 057204 (2012). https://doi.org/10.1103/PhysRevLett.108.057204
  38. R. Mondal, M. Berritta, A.K. Nandy, P.M. Oppeneer. Phys. Rev. B 96, 024425 (2017). https://doi.org/10.1103/PhysRevB.96.024425
  39. T. Kikuchi, G. Phys. Rev. B 92, 184410 (2015). https://doi.org/10.1103/PhysRevB.92.184410
  40. R. Bastardis, F. Vernay, H. Kachkachi, Phys. Rev. B 98, 165444 (2018). https://doi.org/10.1103/PhysRevB.98.165444
  41. M. Cherkasskii, I. Barsukov, R. Mondal, M. Farle, A. Semisalova. Phys. Rev. B 106, 054428 (2022). https://doi.org/10.1103/PhysRevB.106.054428
  42. W.T. Coffey, Yu.P. Kalmykov, S.V. Titov. Thermal Fluctuations and Relaxation Processes in Nanomagnets, World Scientific, Singapore (2020)
  43. R. Bellman. Introduction to matrix analysis, McGraw-Hill, N. Y. (1960)
  44. G.A. Korn, T.M. Korn. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill, N. Y. (1961)
  45. S.V. Titov, W.J. Dowling, A.S. Titov, S.A. Nikitov, M.A. Cherkasskii. Phys. Rev. B, 107, 104416 (2023). https://doi.org/10.1103/PhysRevB.107.104416
  46. M.T. Hutchings, E.J. Samuelsen. Phys. Rev. B 6, 3447 (1972). https://doi.org/10.1103/PhysRevB.6.3447
  47. T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010). https://doi.org/10.1103/PhysRevLett.105.077402
  48. M.J. Besnus, A.J.P. Meyer. Physica Status Solidi B 58, 533 (1973). https://doi.org/10.1002/pssb.2220580213
  49. R. Zhang, R. Skomski, X. Li, Z. Li, P. Manchanda, A. Kashyap, R.D. Kirby, S.-H. Liou, D.J. Sellmyer. J. Appl. Phys. 111, 07D720 (2012). https://doi.org/10.1063/1.3677928
  50. S.V. Titov, W.J. Dowling, A.S. Titov, A.S. Fedorov. AIP Advances, 14, 035216 (2024). https://doi.org/10.1063/5.0191413

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru