Nutation resonance in different states of an antiferromagnet switched by an external magnetic field
Titov Sergei V.
1, Fedorov Andrey S.
2,3, Titov Anton S.
3, Chukashev Nikolay V.
31Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
3Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
Email: pashkin1212@yandex.ru, Fedorov.Andrei@phystech.edu, titov.as@phystech.edu, chukashev.nv@phystech.edu
The results of a study of nutation resonances caused by the magnetization inertia of an antiferromagnet with two sublattices, possessing uniaxial magnetocrystalline anisotropy, are presented. Analytical expressions for the eigenfrequencies of the antiferromagnet are obtained by linearizing the system of coupled inertial Landau-Lifshitz-Gilbert equations describing the dynamics of the sublattice magnetizations. Various states of the antiferromagnet determined by the magnitude of the external magnetic field are considered for longitudinal (along the easy axis) and transverse directions of the field. The effect of dissipation in the system on the half-widths of the nutation resonance lines is demonstrated. Keywords: antiferromagnet, ferromagnet, nutation resonance, antiferromagnetic resonance, Landau-Lifshitz-Gilbert equation, magnetization inertia, uniaxial magnetocrystalline anisotropy.
- T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich. Nat. Nanotechnol. 11, 231 (2016). https://doi.org/10.1038/nnano.2016.18
- V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005
- M. Jungfleisch, W. Zhang, A. Hoffmann. Phys. Lett. A 382, 865 (2018). https://doi.org/10.1016/j.physleta.2018.01.008
- Y.L. Raikher, V.I. Stepanov. ZhETF, 134, 514 (2008). (in Russian). https://doi.org/10.1134/S1063776108090112
- P. Nvcmec, M. Fiebig, T. Kampfrath, A.V. Kimel. Nat. Phys. 14, 229 (2018). https://doi.org/10.1038/s41567-018-0051-x
- A.G. Gurevich. Magnitnyi rezonans v ferritakh i antiferomagnetikakh. (Nauka, M. (1973). (in Russian)
- L.D. Landau. Phys. Zs. Sowjet 4, 675 (1933). https://elib.biblioatom.ru/text/landau_sobranie-trudov_t1_1969/p100/
- L. Neel. C.R. Hebd. Seances Acad. Sci. 252, 4075 (1961). https://hal.science/hal-02878431/document
- L. Neel. C.R. Hebd. Seances Acad. Sci. 253, 9 (1961). https://hal.science/hal-02878448v1/file/Doc.pdf
- L. Neel. C.R. Hebd. Seances Acad. Sci. 253, 203 (1961). https://hal.science/hal-02878449/document
- L. Neel. C.R. Hebd. Seances Acad. Sci. 253, 1286 (1961). https://hal.science/hal-02878450
- Handbook of Terahertz Technology for Imaging, Sensing and Communications / Ed. D. Saeedkia. Woodhead Publ. Lim., Sawston (2013)
- J.-Y. Bigot, M. Vomir, E. Beaurepaire. Nat. Phys. 5, 515 (2009). https://doi.org/10.1038/nphys1285
- C.D. Stanciu, A. Tsukamoto, A.V. Kimel, F. Hansteen, A. Kirilyuk, A. Itoh, Th. Rasing. Phys. Rev. Lett. 99, 217204 (2007). https://doi.org/10.1103/PhysRevLett.99.217204
- S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlr, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, E.E. Fullerton. Nature Mater 13, 286 (2014). https://doi.org/10.1038/nmat3864
- A. Kimel, B. Ivanov, R. Pisarev, P.A. Usachev, A. Kirilyuk, Th. Rasing. Nature Phys. 5, 727 (2009). https://doi.org/10.1038/nphys1369
- S. Wienholdt, D. Hinzke, U. Nowak. Phys. Rev. Lett. 108, 247207 (2012). https://doi.org/10.1103/PhysRevLett.108.247207
- M.-C. Ciornei, J.M. Rubi, J.-E. Wegrowe. Phys. Rev. B 83, 020410(R) (2011). https://doi.org/10.1103/PhysRevB.83.020410
- J.-E. Wegrowe, M.-C. Ciornei. Amer. J. Phys. 80, 607 (2012). https://doi.org/10.1119/1.4709188
- D. Bottcher, J. Henk. Phys. Rev. B 86, 020404(R) (2012). https://doi.org/10.1103/PhysRevB.86.020404
- S. Giordano, P.-M. Dejardin. Phys. Rev. B 102, 214406 (2020). https://doi.org/10.1103/PhysRevB.102.214406
- E. Olive, Y. Lansac, J.-E. Wegrowe. Appl. Phys. Lett. 100, 192407 (2012). https://doi.org/10.1063/1.4712056
- S.V. Titov, W.J. Dowling, Yu.P. Kalmykov. J. Appl. Phys. 131, 193901 (2022). https://doi.org/10.1063/5.0093226
- M. Cherkasskii, M. Farle, A. Semisalova. Phys. Rev. B 102, 184432 (2020). https://doi.org/10.1103/PhysRevB.102.184432
- S. Ghosh, M. Cherkasskii, I. Barsukov, R. Mondal, Theory of tensorial magnetic inertia in terahertz spin dynamics (2024). https://doi.org/10.48550/arXiv.2408.15594
- R. Mondal, S. Grob enbach, L. Rozsa, U. Nowak. Phys. Rev. B 103, 104404 (2021). https://doi.org/10.1103/PhysRevB.103.104404
- S.V. Titov, W.J. Dowling, A.S. Titov, A.S. Fedorov. J. Appl. Phys. 135, 093903 (2024). https://doi.org/10.1063/5.0196622
- M. Cherkasskii, M. Farle, A. Semisalova. Phys. Rev. B, 103, 174435 (2021). https://doi.org/10.1103/PhysRevB.103.174435
- A.M. Lomonosov, V.V. Temnov, J.-E. Wegrowe. Phys. Rev. B, 104, 054425 (2021). https://doi.org/10.1103/PhysRevB.104.054425
- S.V. Titov, W.J. Dowling, Y.P. Kalmykov, M. Cherkasskii. Phys. Rev. B, 105, 214414 (2022). https://doi.org/10.1103/PhysRevB.105.214414
- R. Mondal, L. Rozsa. Phys. Rev. B 106, 134422 (2022). https://doi.org/10.1103/PhysRevB.106.134422
- K. Neeraj, N. Awari, S. Kovalev, D. Polley, N.Z. Hagstrom, S.S.P.K. Arekapudi, A. Semisalova, K. Lenz, B. Green, J.-C. Deinert, I. Ilyakov, M. Chen, M. Bowatna, V. Scalera, M. D'Aquino, C. Serpico, O. Hellwig, J.-E. Wegrowe, M. Gensch, S. Bonetti. Nat. Phys. 17, 245 (2021). https://doi.org/10.1038/s41567-020-01040-y
- A. De, J. Schlegel, A. Lentfert, L. Scheuer, B. Stadtmuller, P. Pirro, G. von Freymann, U. Nowak, M. Aeschlimann. Nutation: separating the spin from its magnetic moment (2024). https://doi.org/10.48550/arXiv.2405.01334
- V. Unikandanunni, R. Medapalli, M. Asa, E. Albisetti, D. Petti, R. Bertacco, E.E. Fullerton, S. Bonetti. Phys. Rev. Lett. 129, 237201 (2022). https://doi.org/10.1103/PhysRevLett.129.237201
- D. Thonig, O. Eriksson, and M. Pereiro, Sci. Rep. 7, 931 (2017). https://doi.org/10.1038/s41598-017-01081-z
- M. Fahnle, D. Steiauf, C. Illg. Phys. Rev. B 84, 172403 (2011). https://doi.org/10.1103/PhysRevB.84.172403
- S. Bhattacharjee, L. Nordstrom, J. Fransson. Phys. Rev. Lett. 108, 057204 (2012). https://doi.org/10.1103/PhysRevLett.108.057204
- R. Mondal, M. Berritta, A.K. Nandy, P.M. Oppeneer. Phys. Rev. B 96, 024425 (2017). https://doi.org/10.1103/PhysRevB.96.024425
- T. Kikuchi, G. Phys. Rev. B 92, 184410 (2015). https://doi.org/10.1103/PhysRevB.92.184410
- R. Bastardis, F. Vernay, H. Kachkachi, Phys. Rev. B 98, 165444 (2018). https://doi.org/10.1103/PhysRevB.98.165444
- M. Cherkasskii, I. Barsukov, R. Mondal, M. Farle, A. Semisalova. Phys. Rev. B 106, 054428 (2022). https://doi.org/10.1103/PhysRevB.106.054428
- W.T. Coffey, Yu.P. Kalmykov, S.V. Titov. Thermal Fluctuations and Relaxation Processes in Nanomagnets, World Scientific, Singapore (2020)
- R. Bellman. Introduction to matrix analysis, McGraw-Hill, N. Y. (1960)
- G.A. Korn, T.M. Korn. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill, N. Y. (1961)
- S.V. Titov, W.J. Dowling, A.S. Titov, S.A. Nikitov, M.A. Cherkasskii. Phys. Rev. B, 107, 104416 (2023). https://doi.org/10.1103/PhysRevB.107.104416
- M.T. Hutchings, E.J. Samuelsen. Phys. Rev. B 6, 3447 (1972). https://doi.org/10.1103/PhysRevB.6.3447
- T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010). https://doi.org/10.1103/PhysRevLett.105.077402
- M.J. Besnus, A.J.P. Meyer. Physica Status Solidi B 58, 533 (1973). https://doi.org/10.1002/pssb.2220580213
- R. Zhang, R. Skomski, X. Li, Z. Li, P. Manchanda, A. Kashyap, R.D. Kirby, S.-H. Liou, D.J. Sellmyer. J. Appl. Phys. 111, 07D720 (2012). https://doi.org/10.1063/1.3677928
- S.V. Titov, W.J. Dowling, A.S. Titov, A.S. Fedorov. AIP Advances, 14, 035216 (2024). https://doi.org/10.1063/5.0191413
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.