Physics of the Solid State
Volumes and Issues
Mechanism of Growth of Ga2O3 Epitaxial Layers by Hydride Vapour-Phase Epitaxy on SiC/Si (110)
KukushkinS. A. 1, Osipov A. V. 2, Ubyivovk E.V. 1,2, Osipova E. V. 1, Sharofidinov Sh.Sh.
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: sergey.a.kukushkin@gmail.com, andrey.v.osipov@gmail.com, ubyivovk@gmail.com, sh.shams@mail.ioffe.ru

PDF
The article studies the growth mechanisms of epitaxial films of β, ε and α phases of gallium oxide (Ga2O3) grown by hydride vapour-phase epitaxy (HVPE) on the surface of hybrid SiC/Si substrates synthesized by the method of coordinated atomic substitution (MCSA) on the surface (110) of silicon substrates. The growth of Ga2O3 layers occurred in a wide range of substrate temperatures from 550oC. The microstructure was analyzed using Raman spectroscopy and high-resolution transmission electron microscopy (TEM). The chemical composition (distribution of chemical elements) was determined using an X-ray spectrometer (EDS), which is an attachment to a scanning electron microscope (SEM). As a result of the studies, it was found that the growth of the Ga2O3 film on the SiC/Si (110) surface occurs in two stages. In the first stage, the SiC/Si (110) surface is enriched with carbon and saturated with silicon vacancies as a result of the interaction of chlorine, which is a product of the reaction of gallium chloride and oxygen, with the SiC/Si (110) surface. Only after the formation of a thin, approximately 1.5 nm thick, carbon layer on the SiC surface, the second stage begins, namely, the growth of the Ga2O3 layer begins. The growth of Ga2O3 begins with the introduction of oxygen atoms into the carbon layer, to which gallium atoms are then attached. After which the growth of the bulk Ga2O3 layer begins. Since the reaction between chlorine and SiC begins to occur noticeably only at temperatures above 700oC, then at lower temperatures no carbon layer is formed on the SiC surface, and accordingly, Ga2O3 layers do not nucleate. It has been suggested that in order to grow high-quality Ga2O3 films, the SiC surfaces must be modified before growth by covering them with either a thin carbon layer or a graphene layer. Keywords: silicon carbide on silicon, gallium oxide, and α, ε and β polytypes Ga2O3, graphene, carbon nanostructures, growth mechanisms.
  1. S.A. Kukushkin, A.V. Osipov. J. Phys. D: Appl. Phys. 47, 313001 (2014). DOI: 10.1088/0022-3727/47/31/313001
  2. S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov. FTT 56, 8, 1457 (2014). (in Russian). DOI: 10.1134/S1063783414080137
  3. S.A. Kukushkin, A.V. Osipov. Inorg. Mater. 57, 13, 1319 (2021). DOI: 10.1134/S0020168521130021
  4. S.A. Kukushkin, A.V. Osipov. Russ. J. Gen. Chem. 92, 4, 584 (2022). DOI: 10.1134/S1070363222040028
  5. S.A. Kukushkin, A.V. Osipov. Kondensirovannye sredy i mezhfaznye granitsy, 24, 4, 407 (2022). (in Russian). DOI: 10.17308/kcmf.2022.24/10549
  6. N.S. Jamwal, A. Kiani. Nanomaterials 12, 2061 (2022). URL: https://doi.org/10.3390/nano12122061
  7. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro. Appl. Phys. Rev. 5, 1, 011301 (2018). URL: https://doi.org/10.1063/1.5006941
  8. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov. Rev. Adv. Mater. Sci. 44, 63 (2016). URL: https://www.elibrary.ru/item.asp?id=26987785
  9. S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, E.V. Osipova, A.I. Pechnikov, N.A. Feoktistov. Epitaxial Gallium Oxide on a SiC/Si Substrate. Physics of the Solid State 58, 9, 1876 (2016). DOI: 10.1134/S1063783416090201
  10. A.V. Osipov, Sh.Sh. Sharofidinov, A.V. Kremleva, A.M. Smirnov, E.V. Osipova, A.V. Kandakov, S.A. Kukushkin. Kondensirovannye sredy i mezhfaznye granitsy, 25, 4, 557 (2023). (in Russian). URL: http://doi.org/10.17308/kcmf.2023.25/11479
  11. A.V. Osipov, Sh.Sh. Sharofidinov, E.V. Osipova, A.V. Kandakov, A.Y. Ivanov, S.A. Kukushin. Coatings. 1, 1802 (2022). URL: http://doi.org/10.3390/coatings12121802
  12. A.V. Osipov, A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, E.V. Osipova, A.I. Pechnikov, I.P. Soshnikov. Contin. Mech. Thermodyn. 30, 1 (2018). URL: https://doi.org/10.1007/s00161-018-0662-6
  13. A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, E.V. Osipova, I.P. Soshnikov. Physics of the Solid State 60, 5, 852 (2018). DOI: 10.1134/S1063783418050104
  14. A.A. Koryakin, S.A. Kukushkin, A.V. Osipov, Sh.Sh. Sharofidinov, M.P. Shcheglov. Materials. 15, 6202 (2022). DOI: 10.3390/ma15186202
  15. R.N. Kutt, E.A. Smorgonskaya, S.K. Gordeev, A.V. Grechinskaya, A.M. Danishevsky. FTT 41, 8, 1484 (1999). (in Russian)
  16. S.K. Gordeev, S.A. Kukushkin, A.V. Osipov, Yu.V. Pavlov. FTT 42, 12, 2245 (2000). (in Russian)
  17. V.B. Kumar, M. Monte, O. Mathon, S. Pascarelli, Z. Porat, A. Gedanken. J. Am. Ceram. Soc. 100, 7, 3305 (2017). DOI: 10.1111/jace.14869
  18. S.A. Kukushkin, A.V. Osipov. UFN 168, 10, 1083 (1998). (in Russian). DOI: https://doi.org/10.3367/UFNr.0168.199810b.1083
  19. G.V. Benemanskaya, P.A. Dementyev, S.A. Kukushkin, A.V. Osipov, S.N. Timoshnev. Pis'ma v ZhTF 45, 5, 17 (2019). (in Russian). DOI: 10.21883/PJTF.2019.05.47390.17621

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru