Generation of clusterized structure of La0.7Sr0.3MnO3-x films in magnetron plasma: Effect of electric fields and ion sound on particle levitation and "frozen" oscillations of film parameters
Okunev V.D.1, Samoilenko Z.A.1, Nikolaenko Yu.M.1, Dyachenko T.A.1, Burkhovetski V.V.1, Korneevets A.S.1
1Galkin Donetsk Institute for Physics and Engineering, Donetsk, Russia
Email: vladimir.okunev2010@mail.ru, samoylenko.zinaida@mail.ru, nik@donfti.ru, dta19@mail.ru, val-bur_63@mail.ru, derebon@rambler.ru
The influence of clusters of different sizes (D=50-400 Angstrem) formed in magnetron plasma on the structure and properties of 36 samples of La0.7Sr0.3MnO3-x films deposited on glass along the particle flow was studied. As a result of comparing the "frozen" oscillations of film parameters with real ion-acoustic oscillations in the plasma, the scenario of its clusterization, which is impossible without particle levitation, was reconstructed. A phenomenological description of this phenomenon is proposed. It is shown that at distances from the target L≤ 2.15 cm, flow clustering is limited by the levitation of atomic clusters as a result of the balance between gravity, ion sound pressure and the force of interaction of charged particles with electric fields; the contribution of ion sound to particle levitation here does not exceed 12%. In the absence of an electric field (L≥ 2.45 cm), levitation depends only on the entrainment of particles by ion-sound oscillations. The results of calculating the critical sizes of levitating atomic groups are consistent with experiment. The influence of changes in the charge state of manganese ions along the flow of particles on the formation of the cluster structure of films has been studied. In the range of 2.15<L<2.45 cm, where the cluster size decreases by half, the relationship between the electrical properties of the films and their structure changes qualitatively. For clusters with sizes smaller than the Debye screening radius (l_D=175 30 Angstrem), the size effects observed in the samples are consistent with the model of localization of electronic states proposed by Lifshitz. Keywords: magnetron plasma, manganese ions of different valences, flow clustering, particle levitation, ion-acoustic wave, amorphous La0.7Sr0.3MnO3 films.
- P.V. Kashtanov, B.M. Smirnov, R. Khippler. UFN 177, 5, 473 (2007). (in Russian)
- M. Panjan, A. Anders. J. Appl. Phys. 121, 6, 063302 (2017)
- V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov. UFN 174, 5, 495 (2004). (in Russian)
- W.D. Suranga Ruhunusiri, J. Goree. Physics of Plasmas 21, 5, 053702 (2014)
- B.B. Kadomtsev. Kollektivnye yavleniya v plazme. (Nauka, M. (1988). p. 303. (in Russian)
- V.D. Okunev, Z.A. Samoylenko, Yu.M. Nikolaenko, T.A. Dyachenko, A.S. Korneevets, E.I. Pushenko. Pis'ma v ZhTF 46, 1, 47 (2020). (in Russian)
- V.D. Okunev, Z.A. Samoylenko, H. Szymczak, T.A. Dyachenko, E.I. Pushenko. FTT 63, 4, 433 (2021). (in Russian)
- V.D. Okunev, Z.A. Samoilenko, H. Szymczak, R. Szymczak, V.V. Burkhovetski, S.J. Lewandowski. J. Appl. Phys. 113, 16, 164309 (2013)
- E.L. Nagaev. Phys. Rep. 346, 6, 387 (2001)
- L.P. Gor'kov and V.Z. Kresin. Phys. Rep. 400, 3, 149 (2004)
- A.L. Rakhmanov, K.I. Kugel, Y.M. Blanter, M.Y. Kagan. Phys. Rev. B 63, 17, 174424 (2001)
- V.D. Okunev, Z.A. Samoylenko, R. Szymczak, S.J. Lewandowski. ZhETF 128, 1, 150 (2005). (in Russian)
- V.D. Okunev, R. Szymczak, M. Baran, H. Szymczak, P. Gier owski. Phys. Rev. B 74, 1, 014404 (2006)
- K.I. Kugel', A.L. Rakhmanov, A.O. Sboychakov, M.Yu. Kagan, I.V. Brodsky, A.V. Klaptsov. ZhETF 125, 3, 648 (2004). (in Russian)
- M.Yu. Kagan, K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov. Electronic Phase Separation in Magnetic and Superconducting Materials. Springer Series in Solid-State Sciences. 201, (2024). 385 c
- V.D. Okunev, Z.A. Samoylenko. Pis'ma v ZhETF 53, 1, 42 (1991). (in Russian)
- V.D. Okunev, Z.A. Samoylenko. Pis'ma v ZhTF 20, 9, 1 (1994). (in Russian)
- B.I. Shklovsky, A.L. Efros. Elektronnye svojstva legirovannykh poluprovodnikov. Nauka, M. (1979), p. 416. (in Russian)
- V.D. Okunev and H. Szymczak. J. Appl. Phys. 133, 8, 084301 (2023)
- V.D. Okunev, S.J. Lewandowski, T.A. Dyachenko, A. Abal'Oshev, P. Gier owski, V.A. Isaev, FTT 53, 1, 15 (2011). (in Russian)
- V.D. Okunev, Z.A.Samoylenko, R. Szymczak, H. Szymczak, A. Szewczyk, A. Malinowski, J. Wieckowski, M. Wolny-Marsza ek, M. Jezabek, I.A. Antoshina. ZhETF 153, 6, 945 (2018). (in Russian)
- V.D. Okunev, Z.A. Samoilenko, N.N. Pafomov, A.L. Plehov, R. Szymczak, H. Szymczak, S.J. Lewandowski. Phys. Lett. A. 373, 8-9, 894 (2009)
- N. Mott, E. Davis. Eletronnye protsessy v nekristallicheskikh veshchestvakh, Mir, M. (1982). p. 663. (in Russian)
- E.L. Nagaev. UFN 166, 8, 833 (1996). (in Russian)
- David B. Wellbeloved, Peter M. Craven, John W. Waudby. Manganese and Manganese Alloys. Ullmann's Encyclopedia of Industrial Chemistry. 22, 175 (2000)
- V.D. Okunev, Z.A. Samoylenko. FTT 33, 10, 2811 (1991). (in Russian)
- E.A. Neufeld, V.E. Arkhipov, N.A. Tumalevich, Ya.M. Mukovsky. Pis'ma v ZhTF 74, 11-12, 630 (2001). (in Russian)
- E.L. Ivchenko. UFN 182, 8, 869 (2012). (in Russian)
- I.M. Lifshits. UFN 83, 8, 617 (1964). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.