Analysis of the spectral dependence of the transmission coefficient of the system titanium dioxide film-glass substrate
Sotnikova L. V.1, Khaneft A.V.1
1Kemerovo State University, Kemerovo, Russia
Email: avkhaneft@mail.ru
Weakly absorbing titanium dioxide (anatase) films of different thicknesses on glass substrate have been obtained. The spectral dependence of the transmission coefficients of both the glass substrate alone and the glass substrate with the titanium dioxide film was measured over a wavelength range of 350-900 nm. The spectral dependence of the transmission coefficient of the film-substrate system on the wavelength of the spectrophotometer light has pronounced alternating maxima and minima caused by interference. The thicknesses of one, three, and five layer anatase films and the refractive index dispersion for the five-layer film were determined. Calculations of the spectral dependence of the transmission coefficient were performed, showing that the smaller the ratio of titanium dioxide film thickness to the wavelength of light, the better the agreement between the calculated and experimental transmission coefficient dispersion. The spectral dependence of the absorption coefficient for a five-layer titanium dioxide film is determined. Keywords: titanium dioxide (anatase), refractive index, dispersion, transmission and absorption coefficients.
- V.I. Fistul. Sil'no legirovannye poluprovodniki (Nauka, Moscow, 1967) (in Russian)
- V.M. Zainulina, V.P. Zhukov, V.N. Krasil'nikov, M.Yu. Yanchenko, L.Y. Buldakova, E.V. Polyakov. Phys. of the Solid State, 52 (2), 271 (2010)
- L.S. Lunin, M.L. Lunina, A.A. Kravtsov, I.A. Sysoev, A.V. Blinov, Semiconductors, 50 (9), 1231 (2016). DOI: 10.1134/S1063782616090141
- V.A. Logacheva, A.N. Lukin, N.N. Afonin, O.V. Serbin, Opt. Spectr., 126 (6), 674 (2019). DOI: 10.1134/S0030400X19060158
- V.V. Brus, Z.D. Kovalyuk, P.D. Maryanchuk. Tech. Phys., 57 (8), 1148 (2012)
- V.M. Kalygina, I.M. Egorova, V.A. Novikov, I.A. Prudaev, O.P. Tolbanov. Semiconductors, 50 (9), 1156 (2016)
- V.M. Kalygina, I.M. Egorova, V.A. Novikov, I.A. Prudaev, O.P. Tolbanov, Semiconductors, 50 (9), 1015 (2016)
- N.V. Chirkunov, M.V. Dorogov, A.E. Romanov. Tech. Phys. Lett., 49 (6), 7 (2023)
- M. Landmann, E. Rauls, W.G. Schmidt. J. Phys.: Condensed Matter., 24 (19), 1 (2012). DOI: 10.1088/0953-8984/24/19/195503
- A.A. Goncharov, A.N. Evsyukov, E.G. Kostin, B.V. Stecenko, E.K. Frolov, A.I. Shchurenko. Tech. Phys., 55 (8), 1200 (2010)
- A.Y. Stepanov, L.V. Sotnikova, A.A. Vladimirov, A.V. Khaneft, E.V. Prosvirkina, F.V. Titov, D.V. Diaghilev. Polzunovskij vestnik, 3, 53 (2014) (in Russian)
- D.V. Dyagilev, T.A. Larichev, V.M. Pugachev, A.A. Vladimirov, L.V. Sotnikova, T.S. Manina, A.Yu. Stepanov, Yu.N. Dudnikova. J. Structural Chem., 55 (6), 1152 (2014). DOI: 10.1134/S0022476614060250
- V.I. Ilyin, S.F. Musikhin, A.Ya. Chic. Varizonnye poluprovodniki i geterostruktury (Nauka, SPb, 2000) (in Russian)
- A.S. Valeev. Opt. Spectrosc., 15 (4), 500 (1963) (in Russian)
- Yu.I. Ukhanov. Opticheskiye svoystva poluprovodnikov (Nauka, M., 1966) (in Russian)
- M. Garbuny. Optical physics (Academic press, NY. and London, 1965)
- N.M. Godzhaev. Optika (Vysshaya shkola, M., 1977) (in Russian)
- A.E. Mudrov. Chislennye metody dlya PEVM na yazykah Bejsik, Fortran i Paskal' (MP "RASKO", Tomsk, 1991) (in Russian)
- V.D. Popovych, P. Potera, I.S. Virt, M.F. Bilyk. Semiconductors, 43 (6), 730 (2009). DOI: 10.1134/S1063782609060086
- N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)