Optical, electrical and EMI shielding properties of AgNW thin films
Voronin A. S.1,2,3, Bril I. I.2, Fadeev Y. V.1,2, Pavlikov A. U.3, Simunin M. M.2,3, Volochaev M. N.4, Govorun I. V.4, Podshivalov I. V.4, Makeev M. O. 1, Mikhalev P. A.1, Parshin B. A.1, Khartov S. V.2
1Bauman Moscow State Technical University, Moscow, Russia
2Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
3Siberian Federal University, Krasnoyarsk, Russia
4Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: a.voronin1988@mail.ru, ellaijiah@gmail.com, daf.hf@list.ru, apavlikov98@mail.ru, michanel@mail.ru, govorun-ilya@mail.ru, podshivalov.ivan@gmail.com, m.makeev@bmstu.ru, pamikhalev@bmstu.ru, parshbgal@bmstu.ru, stas_f1@list.ru

PDF
This paper describes the process of obtaining silver nanowires (AgNW) and the technique for producing thin films on their basis using vacuum filtration. The film thickness was specified by the volume of the base dispersion. In order to improve the physical, mechanical and adhesive properties of the films, AgNW were integrated into a polyurethane substrate. Comprehensive studies of the morphology and structure of both individual AgNWs and their films were conducted. The study of the optoelectric characteristics showed that the AgNW films have a uniform transmittance in the visible range above 500 nm. The radio shielding properties of the film structures in the K and Ka- ranges were also studied. It was shown that the AgNW films have a high shielding coefficient of more than 25 dB in the entire studied frequency range, while the optical transmittance at a wavelength of 550 nm was 69.25%. Keywords: Silver nanowires, AgNW, shielding efficiency, thin films, electrical properties, optical properties.
  1. S.M. Zachariah, Y. Grohens, N. Kalarikkal, S. Thomas. Polym. Compos., 43, 2507 (2022). DOI: 10.1002/pc.26595
  2. Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng. Adv. Mater., 25, 1296 (2013). DOI: 10.1002/adma.201204196
  3. W. Sihai, D.D.L. Chung. Cem. Concr. Res., 34, 329 (2004). DOI: 10.1016/j.cemconres.2003.08.014
  4. W. van Eck. Comput. Secur. Comput. Secur., 4, 269 (1985). DOI: 10.1016/0167-4048(85)90046-X
  5. I. Kubiak, A. Boitan, S. Halunga. Adv. Sci. Inst. Ser. E Appl. Sci., 10, 2828 (2020). DOI: 10.3390/app10082828
  6. A.S. Voronin, Yu.V. Fadeev, I.V. Govorun, A.S. Voloshin, I.A. Tambasov, M.M. Simunin, S.V. Khartov. Pis'ma v ZhTF, 47 (5), (in Russian). 31 (2021). DOI: 10.21883/PJTF.2021.05.50674.18496
  7. G.M. Olson, J.S. Olson. Annu. Rev. Psychol., 54, 491 (2003). DOI: 10.1146/annurev.psych.54.101601.145044
  8. D. Tan, C. Jiang, Q. Li, S. Bi, X. Wang, J. Song. J. Mater. Sci.: Mater. Electron., 32, 25603 (2021). DOI: 10.1007/s10854-021-05409-4
  9. Z. Liang, Z. Zhao, M. Pu, J. Luo, X. Xie, Y. Wang, Y. Guo, X. Ma, X. Luo. Opt. Mater. Express, OME, 10, 796 (2020). DOI: 10.1364/OME.386830
  10. H. Wang, C. Ji, C. Zhang, Y. Zhang, Z. Zhang, Z. Lu, J. Tan, L.J. Guo. ACS Appl. Mater. Interfaces, 11 (12), 11782 (2019). DOI: 10.1021/acsami.9b00716
  11. Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang, W. Wei, Y. Pen, F. Yuan, H. Dong, X. Hou, Z. Wu. ACS Appl. Mater. Interfaces, 12 (2), 2826 (2019). DOI: 10.1021/acsami.9b17513
  12. H. Yang, S. Bai, X. Guo, H. Wang. Appl. Surf. Sci., 483, 888 (2019). DOI: 10.1016/j.apsusc.2019.04.034
  13. D.H. Kim, Y. Kim, J.-W. Kim. Mater. Des., 89, 703 (2016). DOI: 10.1016/j.matdes.2015.09.142
  14. R. Sahoo, R. Sundara, V. Subramanian. Mat. Today: Proceed., 94, 29 (2023). DOI: 10.1016/j.matpr.2023.05.329
  15. L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, Z.-M. Li. ACS Appl. Mater. Interfaces, 10 (14), 11941 (2018). DOI: 10.1021/acsami.8b00492
  16. I.A. Tambasov, A.S. Voronin, N.P. Evsevskaya, Y.M. Kuznetsov, A.V. Luk'yanenko, E.V. Tambasova, M.O. Gornakov, M.V. Dorokhin, Yu.Yu. Loginov. Phys. Solid State, 62, 1090 (2020). DOI: 10.1134/S1063783420060311
  17. Standard Test Method for Pull-off Strength of Coatings Using Portable Adhesion Testers. https://www.astm.org/d4541-22.html
  18. K.S. Lau, S.X. Chin, S.T. Tan, F.S. Lim, W.S. Chang, C.C. Yap, M.H. Hj Jumali, S. Zakaria, S.W. Chook, C.H. Chia. J. Alloys Compd., 803, 165 (2019). DOI: 10.1016/j.jallcom.2019.06.258
  19. C.J. Johnson, E. Dujardin, S.A. Davis, C.J. Murphy, S.J. Mann. Mater. Chem., 12, 1765 (2002). DOI: 10.1039/B200953F
  20. C.S. Todd, X. Chen. Appl. Spectrosc., 74 (2), 204 (2019). DOI: 10.1177/0003702819891060
  21. Y. Gao, P. Jiang, L. Song, L. Liu, X. Yan, Z. Zhou, D. Liu, J. Wang, H. Yuan, Z. Zhang. J. Phys. D Appl. Phys., 38, 1061 (2005). DOI: 10.1088/0022-3727/38/7/015
  22. Y. Gao, L. Song, P. Jiang, L.F. Liu, X.Q. Yan, Z.P. Zhou, D.F. Liu, J.X. Wang, H.J. Yuan, Z.X. Zhang, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, S.S. Xie, H.Y. Chen, J.Q. Li. J. Cryst. Growth, 276, 606 (2005). DOI: 10.1016/j.jcrysgro.2004.11.396
  23. Y. Sun, Y. Ren, Y. Liu, J. Wen, J.S. Okasinski, D.J. Miller. Nat. Commun., 3, 1 (2012). DOI: 10.1038/ncomms1963
  24. G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O'Connell, P.J. Trefonas. Appl. Phys., 114, 024302 (2013). DOI: 10.1063/1.4812390
  25. X. Li, J. Zhou, D. Yan, Y. Peng, Y. Wang, Q. Zhou, K. Wang. Materials, 14, 2219 (2021). DOI: 10.3390/ma14092219
  26. N.H. Mudri, L.C. Abdullah, M.M. Aung, M.Z. Salleh, D.R. Awang Biak, M. Rayung. Polymers, 12, 1494 (2020). DOI: 10.3390/polym12071494
  27. S. Sorel, P.E. Lyons, S. De, J.C. Dickerson, J.N. Coleman. Nanotechnology, 23, 185201 (2012). DOI: 10.1088/0957-4484/23/18/185201
  28. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman. ACS Nano, 3 (7), 1767 (2009). DOI: 10.1021/nn900348c
  29. R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey. ACS Nano, 7 (9), 7654 (2013). DOI: 10.1021/nn403324t
  30. A.S. Voronin, F.S. Ivanchenko, M.M. Simunin, A.V. Shiverskiy, A.S. Aleksandrovsky, I.V. Nemtsev, Y.V. Fadeev, D.V. Karpova, S.V. Khartov. Appl. Surf. Sci., 364, 931 (2016). DOI: 10.1016/j.apsusc.2015.12.182
  31. IEC 60050 --- International Electrotechnical Vocabulary. https://www.electropedia.org/
  32. H. Wang, S. Li, M. Liu, J. Li, X. Zhou. Macromol. Mater. Eng., 306, 2100032 (2021). DOI: 10.1002/mame.202100032
  33. S.H. Ryu, Y.K. Han, S.K. Kwon, T. Kim, B.M. Jung, S.-B. Lee, B. Park. Chem. Eng. J., 428, 131167 (2022). DOI: 10.1016/j.cej.2021.131167
  34. Y. Han, Y. Liu, L. Han, J. Lin, P. Jin. Carbon NY., 115, 34 (2017).
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru