Influence of foam initial liquid fraction on the effectiveness of spherical explosion attenuation in a pipe
Bolotnova R. Kh.1, Gainullina E. F.1, Korobchinskaya V. A.1
1Mavlyutov Institute of Mechanics UFRC RAS, Ufa, Russia
Email: bolotnova@anrb.ru, elina.gef@yandex.ru, buzina_lera@mail.ru

PDF
Interaction features of a spherical shock wave formed in the center of a non-deformable pipe filled with gas and contained the protective layer of aqueous foam on its inner surface are investigated. Numerical modeling is carried out on the basis of a two-phase gas-liquid model with a single pressure of phases, taking into account interphase forces and heat transfer. Reliability of the model is confirmed by comparing the calculations with experiments on a spherical explosion in aqueous foam. Pressure evolution on the pipe surface in the near zone of shock wave initiation is analyzed in detail in the absence and presence of foams with different liquid fraction. Significant decrease in the amplitude and velocity of the wave pulse is shown by using foam protection on the pipe wall. Keywords: aqueous foam, shock waves, cylindrical pipe, numerical simulation.
  1. E. Del Prete, A. Chinnayya, L. Domergue, A. Hadjadj, J.-F. Haas. Shock Waves, 23 (1), 39 (2013). DOI: 10.1007/s00193-012-0400-0
  2. S.P. Medvedev, S.V. Khomik, V.N. Mikhalkin, A.N. Ivantsov, G.L. Agafonov, A.A. Cherepanov, T.T. Cherepanova, A.S. Betev. J. Phys.: Conf. Ser., 946, 012061 (2018). DOI: 10.1088/1742-6596/946/1/012061
  3. K.L. Monson, K.M. Kyllonen, J.L. Leggitt, K.E. Edmiston, C.R. Justus, M.F. Kavlick, M. Phillip, M.A. Roberts, C.W. Shegogue, G.D. Watts. J. Forensic Sci., 65 (6), 1894 (2020). DOI: 10.1111/1556-4029.14536
  4. K. Ahmed, A.Q. Malik. AIP Advances, 10, 065130 (2020). DOI: 10.1063/5.0010283
  5. G. Jourdan, C. Mariani, L. Houas, A. Chinnayya, A. Hadjadj, E. Del Prete, J.-F. Haas, N. Rambert, D. Counilh, S. Faur. Phys. Fluids, 5, 056101 (2015). DOI: 10.1063/1.4919905
  6. M. Monloubou, J. Le Clanche, S. Kerampran. Actes 24eme Congres Francais de Mecanique. Brest: AFM, 255125 (2019)
  7. E.F. Gainullina. Multiphase systems, 14 (2), 74 (2019) (in Russian). DOI: 10.21662/mfs2019.2.011
  8. R.Kh. Bolotnova, E.F. Gainullina. Bulletin of the South Ural State University. Seriya "Matematicheskoe modelirovanie i programmirovanie", 14 (1), 118 (2021) (in Russian). DOI: 10.14529/mmp210109
  9. R.Kh. Bolotnova, E.F. Gainullina, V.A. Korobchinskaya. Tech. Phys. Lett., 12, 104 (2023)
  10. R.I. Nigmatulin. Dynamics of multiphase media (Hemisphere, NY., 1990)
  11. L.D. Landau, E.M. Lifshitz. Fluid mechanics (Pergamon Press, Oxford, 1987), v. 6
  12. Electronic source. OpenFOAM. The open source computational fluid dynamics (CFD) toolbox. Available at: http://www.openfoam.com
  13. S.A. Zhdan. FGV, 26 (2), 103 (1990) (in Russian). https://elibrary.ru/item.asp?id=30555610
  14. G. Kinney, K. Graham. Explosives shocks in Air (Springer, Berlin, 1985)
  15. W. Hartman, B. Boughton, M. Larsen. Blast mitigation capabilities of aqueous foam (Sandia National Laboratories Tech. Rep. SAND2006-0533, 2006), p. 98

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru