Non-uniformities of magnetic fields of accretion disks and their stability
Zhikhareva E. N.1, Mikhailov E. A. 1,2
1Lomonosov Moscow State University, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: zhikhareva.en21@physics.msu.ru, ea.mikhajlov@physics.msu.ru

PDF
The magnetic fields of accretion disks may play a crucial role in their evolution. Thereare various ways to explain their origin, one of which is the dynamo mechanism. Given the shape of the objects, it is possible to use the thin disk approximation developed for thin disks. The question of whether the long-term existence of large-scale magnetic field non-uniformities are possible in them is of interest. It was investigated using numerical modeling if such features can be maintained in accretion disks. It is found that only axisymmetric structures are stable, azimuthal structures are eroded over time. Keywords: stability, dynamo, accretion disks, magnetism.
  1. N.I. Shakura, R.A. Sunyaev. A\&A, 24, 337 (1973). DOI: 10.1017/S007418090010035X
  2. S.H. Lubow, J.C.B. Papaloizou, J.E. Pringle. MNRAS, 267 (2), 235 (1994). DOI: 10.1093/mnras/267.2.235
  3. A. Brandenburg, K.J. Donner. MNRAS, 288, L29 (1997). DOI: 10.1093/mnras/288.2.L29
  4. D. Moss, D. Sokoloff, V. Suleimanov. A\&A, 588, A18 (2016). DOI: 10.1051/0004-6361/201525944
  5. M. Reyes-Ruiz, T.F. Stepinski. A\&A, 342 (1999)
  6. O. Gressel, M.E. Pessah. Astrophys. J., 810, (2015). DOI: 10.1088/0004-637X/810/1/59
  7. D.D. Sokoloff. Astron. Rep., 65 (10), 1054 (2021). DOI: 10.1134/S1063772921100371
  8. Ya.B. Zeldovich, A.A. Ruzmaykin, D.D. Sokolov. Magnitnye polya v astrofizike (M., Izhevsk, 2006), 383 s (in Russian)
  9. D. Sokoloff. Moss Geophys. Astrophys. Fluid Dynamics, 107, 3 (2013). DOI: 10.1080/03091929.2011.649750
  10. D.V. Boneva, E.A. Mikhailov, M.V. Pashentseva, D.D. Sokoloff. A\&A, 652 (2021). DOI: 10.1051/0004-6361/202038680
  11. D.A. Grachev, E.A. Mikhailov, E.N. Zhikhareva. Open Astronomy, 32 (1), (2023). DOI: 10.1515/astro-2022-0216
  12. D. Moss, A. Shukurov, D. Sokoloff. Geophys. Astrophys. Fluid Dynamics, 89 (3), 285 (1998). DOI: 10.1080/03091929808203688
  13. N.N. Nefedov, A.G. Nikitin, M.A. Petrova, L. Rekke. Differents. uravneniya, 47, 1305 (2011) (in Russian). A.A. Samarsky, P.N. Vabishevich, Vychislitelnaya teploperedacha (Stereotim., M., 2020), 167 (in Russian)
  14. U.P. Steinwandel, K. Dolag, H. Lesch, B.P. Moster, A. Burkert, A. Prieto. MNRAS, 494, 4393 (2020). DOI: 10.1093/mnras/staa817
  15. E.A. Mikhaylov, T.T. Khasaeva, I.O. Teplyakov. Tr. Instituta sistemnogo programmirovaniya RAN, 33 (6), 253 (2021) (in Russian). DOI: 10.15514/ISPRAS-2021-33(6)-18
  16. S.A. Khaybrakhmanov, A.E. Dudorov. Astronom. zhurn., 99 (10), 832 (2022) (in Russian). DOI: 10.31857/S0004629922100073

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru