Influence of mechanical stresses on the coefficient of thermal expansion of polymerized steel-filled epoxy resin
Glazov A. L.
1, Muratikov K. L.
1, KapralovA. A.
11Ioffe Institute, St. Petersburg, Russia
Email: glazov.holo@mail.ioffe.ru, Kapr_alex@mail.ioffe.ru
It has been experimentally shown that the standard theory of thermoelasticity cannot describe the dependence of laser-excited acoustic vibrations on stress in an epoxy composite with a conductive filler. To explain the data obtained, a theoretical model of thermoelasticity was used, which takes into account the thermal perturbation of non-stationary defect states with relaxation. The proposed model also takes into account the change in electron gas pressure due to the excitation of defects in metals. It is shown that the dynamic coefficient of thermal expansion in this material is determined primarily by the conductive component. Keywords: thermoelasticity, ultrasound, epoxy composites, mechanical stress.
- C. Millon, A. Vanhoye, A.F. Obaton, J.-D. Penot. Weld. World 62, 653 (2018). DOI:10.1007/s40194-018-0567-9
- I. Pelivanov, . Ambrozinski, A. Khomenko, E.G. Koricho, G.L. Cloud, M. Haq, M. O'Donnell. Photoacoustics 4, 2, 55 (2016). DOI: 0.1016/j.pacs.2016.05.002
- Y. Zhan, H. Xu, W. Du, C. Liu. Ultrasonics 115, 106466 (2021). DOI: 10.1016/j.ultras.2021.106466
- A.L. Glazov, K.L. Muratikov, Tech.Phys.Lett. 45, 9, 902 (2019). DOI: 10.1134/S1063785019090049
- A.L. Glazov, K.L. Muratikov. J. Appl. Phys. 131, 245104 (2022). DOI: 10.1063/5.0088327
- M.C. Remillieux, R.A. Guyer, C. Payan, T.J. Ulrich. Phys. Rev. Lett. 116, 115501 (2016). DOI: 10.1103/PhysRevLett.116.115501
- M. Lott, M.C. Remillieux, V. Garnier, P.-Y. Le Bas, T.J. Ulrich, C. Payan. Phys. Rev. Mater. 1, 023603 (2017). DOI: 10.1103/PhysRevMaterials.1.023603
- M. Scalerandi, C. Mechri, M. Bentahar, A. Di Bella, A.S. Gliozzi, M. Tortello. Phys. Rev. Appl. 12, 044002 (2019). DOI: 10.1103/PhysRevApplied.12.044002
- S. Timoshenko, J.N. Goodier. Theory of elasticity. McGraw-Hill, N.Y. (1951). P. 78
- A.K. Wong, R. Jones, J.G. Sparrow. J. Chem. Phys. Sol. 48, 749 (1987). DOI: 10.1016/0022-3697(87)90071-0
- https://threebond-europe.com/wp-content/uploads/2021/10/Tech-News-No.-95.pdf
- A.L. Glazov, K.L. Muratikov. J. Phys. Conf. Ser. 1697, 012186 (2020). DOI: 10.1088/1742-6596/1697/1/012186
- A.L. Glazov, K.L. Muratikov. Phys. Rev. B 105, 214104 (2022). DOI: 10.1103/PhysRevB.105.214104
- A.L. Glazov, K.L. Muratikov, Phys. Solid State 63, 5, 1 (2021). DOI: 10.1134/S1063783421050061
- J.Y. Yoritomo, R.L. Weaver. Phys. Rev. E 102, 012901 (2020). DOI: 10.1103/PhysRevE.102.012901
- J. Kober, A. Kruisova, M. Scalerandi. Appl. Sci. 11, 8631 (2021). DOI: 10.3390/app11188631
- P. Johnson, A. Sutin. J. Acoust. Soc. Am. 117, 124 (2005). DOI: 10.1121/1.1823351
- C.K.C. Lieou, E.G. Daub, R.A. Guyer, P.A. Johnson. J. Geophys. Res. Solid Earth 122, 6998 (2017). DOI: 10.1002/2017JB014498
- J.Y. Yoritomo, R.L. Weaver. Phys. Rev. E 101, 012901 (2020). DOI: 10.1103/PhysRevE.101.012901
- A.L. Glazov, K.L. Muratikov. J. Appl. Phys. 128, 095106 (2020). DOI: 10.1063/5.0013308
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.