Вышедшие номера
Нанесение пленок углеродных нановолокон для газовых сенсоров NO2
Головахин В.1, Шишин А.А.1, Лозбень А.Д.1, Смагулова А.Р.1, Гудыма Т.С.1, Максимовский Е.А.2, Курмашов П.Б.1, Баннов А.Г.1
1Новосибирский государственный технический университет, Новосибирск, Россия
2Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия
Email: golovaxin-valera@mail.ru
Поступила в редакцию: 3 октября 2024 г.
В окончательной редакции: 3 октября 2024 г.
Принята к печати: 3 октября 2024 г.
Выставление онлайн: 2 марта 2025 г.

Рассмотрен подбор оптимальных параметров нанесения и исследования пленок углеродных нановолокон для газовых сенсоров NO2. Изучено влияние времени ультразвукового диспергирования суспензии, массы углеродных нановолокон, объема растворителя для проведения нанесения суспензии нановолокно-этанол на подложку сенсора методом drop casting. Получены регрессионные уравнения, определяющие область рациональных параметров, в которых необходимо проводить нанесения покрытия для получения более высокой относительной чувствительности сенсора. Ключевые слова: углеродные нановолокна, газовые сенсоры, матрица планирования эксперимента, пленки углеродных материалов.
  1. R.M. Usmanova, N.A. Sattarova, N.N. Boyko. IOP Conf. Ser. Mater. Sci. Eng., 1079, 062040 (2021). DOI: 10.1088/1757-899X/1079/6/062040
  2. I.D. Williams, M. Blyth. Sci. Total Environ., 858, 159987 (2023). DOI: 10.1016/j.scitotenv.2022.159987
  3. E. Llobet. Sensors and Actuators B: Chem., 179, 32 (2013). DOI: 10.1016/j.snb.2012.11.014
  4. R.B. Onyancha, K.E. Ukhurebor, U.O. Aigbe, O.A. Osibote, H.S. Kusuma, H. Darmokoesoemo, V.A. Balogun. Sensing and Bio-Sensing Research, 34, 100463 (2021). DOI: 10.1016/j.sbsr.2021.100463
  5. S. Freddi, M. Vergari, S. Pagliara, L. Sangalettiet. Sensors., 23 (2), 882 (2023). DOI: 10.3390/s23020882
  6. M.A. Hejazi, O. Eksik, C. Tasdelen-Yucedag, C. Unlu, L. Trabzon. Emergent Mater., 6, 45 (2023). DOI: 10.1007/s42247-023-00454-7
  7. S. Shahzad, H. Wang, W. Li, Y. Sun, D. Xie, T. Ren. Chemosensors, 10 (3), 119 (2022). DOI: 10.3390/chemosensors10030119
  8. L. Fu, A.M. Yu. Rev. Adv. Mater. Sci., 36, 40 (2014)
  9. B. De, S. Banerjee, T. Pal, K. D. Verma, A. Tyaga, P.K. Manna, K.K. Kar. Spr. Ser. Mat. Sc., 302, 353 (2020). DOI: 10.1007/978-3-030-52359-6_14
  10. D.K. Maurya, S. Angaiah. Electrospun Nanofibers based Electrodes and Electrolytes for Supercapacitors. In: A. Vaseashta, N. Bolgen (eds). Electrospun Nanofibers (Springer, Cham., 2022), DOI: 10.1007/978-3-030-99958-2_13
  11. Y. Zhao, H. Bin, Y. Ji, Y. Yu, X. Gao, Zh. Zhang, H.-F. Fei. ACS Appl. Mater. Interfaces, 15 (4), 5644 (2023). DOI: 10.1021/acsami.2c19696
  12. Y. Wang, J. Cui, Q. Qu, W. Ma, F. Li, W. Du, K. Liu, Q. Zhang, S. He, Ch. Huang. Microporous Mesoporous Mater. Elsevier Inc., 329, 111545 (2022). DOI: 10.1016/j.micromeso.2021.111545
  13. C. Vincent, J.M. Heintz, J.F. Silvain, N. Chandra. Open J. Compos. Mater., 1, 1 (2011). DOI: 10.4236/ojcm.2011.11001
  14. I. Sharafeldin, S. Garcia-Rios, N. Ahmed, M. Alvarado, X. Vilanova, N.K. Allam. J. Environ. Chem. Eng. Elsevier Ltd., 9 (1), 104534 (2021). DOI: 10.1016/j.jece.2020.104534
  15. S. Kim, K.-H. Lee, J.Y. Lee, K.K. Kim, Y.-H. Choa, J.-H. Lim. Electron. Mater. Lett., 15, 12 (2019). DOI: 10.1007/s13391-019-00177-0
  16. Q.B. Tang, Y.J. Guo, Y.L. Tang, G.D. Long, J.L. Wang, D.J. Li, Xi.-T. Zu, J.Y. Ma, L. Wang, H. Torun, Y.Q. Fu. J. Mater. Sci., 54, 11925 (2019). DOI: 10.1007/s10853-019-03764-6
  17. C. Yu, Y. Wu, X. Liu, F. Fu, Y. Gong, Y. Rao, Y. Chen. Sensors Actuators, B Chem., 244, 107 (2017). DOI: 10.1016/j.snb.2016.12.126
  18. X. Li, C. Xiangdong, Y. Yao, Li Ning, C. Xinpeng. Sensors Actuators B: Chem., 196, 183 (2014). DOI: 10.1016/j.snb.2014.01.088
  19. M. Meyyappan. Small, 12 (16), 2118 (2016). DOI: 10.1002/smll.201502555
  20. M. Kaloumenou, E. Skotadis, N. Lagopati, E. Efstathopoulos, D. Tsoukalas. Sensors., 22 (3), 1238 (2022). DOI: 10.3390/s22031238
  21. L. Valentini, I. Armentano, J.M. Kenny, C. Cantalini, L. Lozzi, S. Santucci. Appl. Phys. Lett., 82, 961 (2003). DOI: 10.1063/1.1545166
  22. F. Usman, K.H. Ghazali, R. Muda, J.O. Dennis, K.H. Ibnaouf, O.A. Aldaghri, A. Alsadig, N.H. Johari, R. Jose. Chemosensors, 11 (2), 119 (2023). DOI: 10.3390/chemosensors11020119
  23. S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow. J. Am. Chem. Soc., 134 (10), 4905 (2012). DOI: 10.1021/ja211683m
  24. R.G. Mendes, P.S. Wrobel, A. Bachmatiuk, J. Sun, Th. Gemming, Zh. Liu, M.H. Rummeli. Chemosensors, 6 (4), 60 (2018). DOI: 10.3390/chemosensors6040060
  25. F. Zhang, Q. Lin, F. Han, Z. Wang, B. Tian, L. Zhao, T. Dong, Z. Jiang. Microsystems Nanoeng., 8, Art. Num. 40 (2022). DOI: 10.1038/s41378-022-00369-z
  26. L. Randeniya, P.J. Martin, A. Bendavid, J. McDonnell. Carbon, 49 (15), 5265 (2011). DOI: 10.1016/j.carbon.2011.07.044
  27. X. Feng, S. Irle, H. Witek, K. Morokuma, R. Vidic, E. Borguet. J. Am. Chem. Soc., 127 (30), 10533 (2005). DOI: 10.1021/ja042998u
  28. R. Mangu, S. Rajaputra, P. Clore, D. Qian, R. Andrews, V. Singh. Mater. Sci. Eng. B, 174 (1-3), 2 (2010). DOI: 10.1016/J.MSEB.2010.03.003
  29. F. Rigoni, S. Tognolini, P. Borghetti, G. Drera, S. Pagliara, A. Goldonid, L. Sangalett. Analyst. 138 (24), 7392 (2013). DOI: 10.1039/c3an01209c
  30. E. Bekyarova, M. Davis, T. Burch, M.E. Itkis, B. Zhao, S. Sunshine, R.C. Haddon. J. Phys. Chem. B., 108 (51), 19717 (2004). DOI: 10.1021/jp0471857
  31. R.M. Sidek, F.A.M. Yusof, F.M. Yasin, R. Wagiran, F. Ahmadun. Electrical response of multi-walled carbon nanotubes to ammonia and carbon dioxide, 2010 IEEE Intern. Conf. Semiconductor Electron. (ICSE2010) (Malacca, Malaysia, 2010), p. 263-266. DOI: 10.1109/SMELEC.2010.5549502
  32. J. Kombarakkaran, C.F.M. Clewett, T. Pietrab. Chem. Phys. Lett., 441 (4-6), 282 (2007). DOI: 10.1016/j.cplett.2007.05.015
  33. J.-W. Han, B. Kim, B. Kim, J. Li, M. Meyyappan. RSC Adv., 4, 549 (2014). DOI: 10.1039/c3ra46347h
  34. A. Sharma, M. Tomar, V.J. Gupta. Mater. Chem., 22, 23608 (2012). DOI: 10.1039/C2JM35172B
  35. S. Peng, K. Cho, P. Qi, H. Dai. Chem. Phys. Lett., 387 (4-6), 271 (2004). DOI: 10.1016/j.cplett.2004.02.026
  36. Z. Li, J. Li, X. Wu, S. Shuang, C. Dong, M.M.F. Choi. Sensors Actuators B Chem., 139 (2), 453 (2009). DOI: 10.1016/j.snb.2009.03.069
  37. X. Li, J. Liu, C. Zhu. Various characteristic of Carbon nanotubes film methane Gas sensor, 1st IEEE Intern. Conf. on Nano/Micro Engineered and Molecular Systems (Zhuhai, China, 2006), p. 1453-1456. DOI: 10.1109/NEMS.2006.334805
  38. P. Samarasekara. Chinese J. Phys., 47 (3), 361 (2009)
  39. H. Dai, P. Xiao, Q. Lou. Phys. Status Solidi., 208 (7), 1714 (2011). DOI: 10.1002/pssa.201026562
  40. H. Li, J. Zhang, G. Li, F. Tan, R. Liu, T. Zhang, H. Jin, Q. Li. Carbon, 66, 369 (2014). DOI: 10.1016/j.carbon.2013.09.012
  41. J. Maklin, T. Mustonen, N. Halonen, G. Toth, K. Kordas, J. Vahakangas, H. Moilanen, A. Kukovecz, Z. Konya, H. Haspel, Z. Gingl, P. Heszler, R. Vajtai, P.M. Ajayan. Phys. Status Solidi Basic Res., 245 (10), 2335 (2008). DOI: 10.1002/pssb.200879580
  42. F. Mendoza, D. Hernandez, V. Makarov, E. Febus, B. Weiner, G. Morell. Sensors Actuators B: Chem., 190, 227 (2014). DOI: 10.1016/j.snb.2013.08.050
  43. K.G. Ong, C. Grimes. Sensors, 1 (6), 193 (2001). DOI: 10.3390/s10600193
  44. V. Desmaris, M.A. Saleem, S. Shafiee. IEEE Nanotechnol. Mag., 9 (3), 33 (2015). DOI: 10.1109/MNANO.2015.2409394
  45. Z. Wang, S. Wu, J. Wang, A. Yu, G. Wei. Nanomaterials, 9 (7), 1045 (2019). DOI: 10.3390/nano9071045
  46. A.G. Bannov, N.I. Lapekin, P.B. Kurmashov, A.V. Ukhina A. Manakhov. Chemosensors, 10 (12), 525 (2022). DOI: 10.3390/chemosensors10120525
  47. P. Dariyal, S. Sharma, G.S. Chauhan, B.P. Singh, S.R. Dhakate. Nanoscale Adv. Royal Society Chem., 3, 6514 (2021). DOI: 10.1039/D1NA00707F
  48. M. Clausi, M.G. Santonicola, S. Laurenzi. Compos. Part A: Appl. Sci. Manuf., 88, 86 (2016). DOI: 10.1016/j.compositesa.2016.05.026
  49. R.K. Yonkoski, D.S. Soane. J. Appl. Phys., 72, 725 (1992). DOI: 10.1063/1.351859
  50. T. Ohara, Y. Matsumoto, H. Ohashi. Phys. Fluids A., 1, 1949 (1989). DOI: 10.1063/1.857520
  51. C.J. Venegas, S. Bollo, P. Sierra-Rosales. Micromachines, 14 (9), 1752 (2023). DOI: 10.3390/mi14091752
  52. W. Boumya, N. Taoufik, M. Achak, N. Barka. J. Pharm. Anal., 11 (2), 138 (2021). DOI: 10.1016/j.jpha.2020.11.003
  53. O. Kanoun, C. Muller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, A. Bouhamed. Sensors, 14 (6), 10042 (2014). DOI: 10.3390/s140610042
  54. A.G. Bannov, O. Javsek, J. Pravsek, J. Burvsi k, L. Zajckova. J. Sensors, 2018, 7497619 (2018). DOI: 10.1155/2018/7497619
  55. J.T.W. Yeow, Y. Wang. J. Sensors, 2009, 493904 (2009). DOI: 10.1155/2009/493904
  56. П.Б. Курмашов, В.В. Максименко, А.Г. Баннов, Г.Г. Кувшинов. Горизонтальный пилотный реактор с виброожиженным слоем для процесса синтеза нановолокнистого углерода. Химическая технология (БГТУ, Минск, 2013), с. 635-640
  57. N.R. Draper, H. Smith. Applied Regression Analysis (Wiley, 1998)
  58. Ю.П. Адлер, Е.В. Маркова, Ю.В. Грановский. Планирование эксперимента при поиске оптимальных условий (Наука, М., 1976), с. 280
  59. S. Drewniak, . Drewniak, T. Pustelny. Sensors, 22 (14), 5316 (2022). https://doi.org/10.3390/s22145316
  60. A. Mukherjee, L.R. Jaidev, K. Chatterjee, A. Misra. Nano Express, 1, 010003 (2020). DOI: 10.1088/2632-959X/ab7491
  61. Y. Zhou, C. Gao, Y. Guo. J. Mater. Chem. A, 6, 10286 (2018). DOI: 10.1039/C8TA02679C
  62. Y. Masuda. Sensors Actuators B: Chem., 364, 131876 (2022). DOI: 10.1016/j.snb.2022.131876
  63. S.T. Navale, M.A. Chougule, V.B. Patil, A.T. Mane. Synth. Met., 189, 94 (2014). DOI: 10.1016/j.synthmet.2014.01.002
  64. M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim. Sensors Actuators B: Chem., 166-167, 172 (2012). DOI: 10.1016/j.snb.2012.02.036
  65. V.I. Sysoev, A. Okotrub, I. Asanov, P. Gevkov, L. Bulusheva. Carbon, 118, 225 (2017). DOI: 10.1016/j.carbon.2017.03.026
  66. V.I. Sysoev, M.O. Bulavskiy, D.V. Pinakov, G.N. Chekhova, I.P. Asanov, P.N. Gevko, L.G. Bulusheva, A.V. Okotrub. Materials, 13 (16), 3538 (2020). DOI: 10.3390/ma13163538

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.