Interactions involving optically oriented Na and Cs atoms in the ground state in a Na-Cs mixture. Frequency shifts.
Kartoshkin V. A.
1
1Ioffe Institute, St. Petersburg, Russia
Email: victor.kart@mail.ioffe.ru
The article considers the interaction of alkali atoms Na and Cs in a Na-Cs mixture during optical orientation. Such systems are used as working media when creating devices that operate on the principles of optical orientation of atoms and are used for magnetic measurements. In particular, when developing quantum magnetometers, gyroscopes, and magnetoencephalographs. Optically oriented atoms of alkali metals in the working chamber of such devices collide with each other, and the collisions of atoms are accompanied by the known process of spin exchange (i.e., there is an exchange of electron polarization between the colliding atoms). The spin exchange process significantly affects the width of the magnetic resonance line, as well as the frequency shift. In this work, the dependences of the magnetic resonance frequency shifts on temperature in the range T = 300-400 K are calculated, caused by collisions of optically oriented atoms for various hyperfine levels of these atoms (the total moment F=4 for Cs atoms and F=2 for Na atoms). A significant difference in the dependence of shifts on temperature for optical orientation of 133Cs or 23Na atoms for different hyperfine levels has been established. Keywords: frequency shift, optical orientation, magnetic resonance.
- V.A. Kartoshkin. Opt. Spectrosc., 128 (9), 1355 (2020). DOI: 10.1134/S0030400X2009012X
- Yudong Ding, Wei Xiao, Yixin Zhao et al. Phys. Rev. Appl., 19 (3), 034066 (2023). DOI: 10.1103/PhysRevApplied.19.034066
- E.B. Aleksandrov, M.V. Balabas, A.K. Vershovskii, F.S. Pazgalev. Tech. Phys., 45, 931 (2000). DOI: 10.1134/1.1259751
- Jian-Hua Liu, Dong-Yang Jing, Lin Zhuang, Wei Quan, Jiancheng Fang, Wu-Ming Liu. Chin. Phys. B, 29 (4), 043206 (2020). DOI: 10.1088/1674-1056/ab7d94
- LvYang, Haoying Pang , Wei Quan. Photonics, 11 (2), 182 (2024). DOI: 10.3390/photonics11020182
- Sixun Liu, Ruigang Wang, Linlin Yuan, Jiaqi Wu, Qi Yuan, Jun Zhu, Wenfeng Fan, Zhuo Wang, Pengcheng Du. Opt. Expr., 30 (9), 15310 (2022). DOI: 10.1364/OE.456937
- Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, J. Fang. Sci. Rep., 6, 36547 (2016). DOI: 10.1038/srep36547
- M.M. Hawamdeh, A.S. Sandouqa1, B.R. Joudeh, O.T. Al-Obeidat, H.B. Ghassib. Eur. Phys. J. Plus, 137, 1025 (2022). DOI: 10.1140/epjp/s13360-022-03244-y
- A.A. Radtstsig, B.M. Smirnov, Spravochnik po atomnoy i molekularnoy fizike (Atomizdat, M., 1980) (in Russian)
- S.P. Dmitriev, N.A. Dovator. Tech. Phys., 52 (7), 940 (2007). DOI: 10.1134/S1063784207070183
- V.A. Kartoshkin. In Alkali metals: new research (Nova Sci. Publ. Publ., 2023). Ch. 3
- V.A. Kartoshkin. Opt. Spectrosc., 116 (4), 548 (2014). DOI: 10.1134/S0030400X14030096
- N.F. Mott, H.S.W. Massey. The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965)
- W.T. Zemke, W.C. Stwalley. J. Chem. Phys., 100 (4), 2661 (1994). DOI: 10.1063/1.467249
- V.S. Ivanov, V.B. Sovkov. J. Chem. Phys., 118 (18), 8242 (2003). DOI: 10.1063/1.1565107
- A.I. Okunevich. Opt. Spectrosc., 79 (5), 718 (1995)
- A.N. Nesmeyanov. Vapor Pressure of the Elements (Academic Press, N.Y., 1963)
- C. Amiot, O.J. Dulieu. Chem. Phys., 117 (11), 5155 (2002). DOI: 10.1063/1.1499122
- O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knockeland, E. Tiemann. J. Phys. B, 39 (19), S929 (2006). DOI: 10.1088/0953-4075/39/19/S08
- V.A. Kartoshkin. Opt. Spectrosc., 131 (8), 992 (2023)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.