The quantum chemical study of the absorption spectrum of the neutral and charged forms of penicillin G sodium solt
Bazyl O. K. 1, Bocharnikova E. N. 1, Tchaikovskaya O. N. 1,2, Mayer G. V. 1
1Tomsk State University, Tomsk, Russia
2Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: olga.k.bazyl@gmail.com, bocharnikova.2010@mail.ru, tchon@phys.tsu.ru, mayer_gv@mail.tsu.ru

PDF
The methods of spectroscopy and quantum chemistry were used to investigate the nature of absorption spectra and charge distribution of benzylpenicillins. The assumed spatial structure of the complex of benzylpenicillin sodium salt anion with water of composition 1:3 has been optimized. It was found that the absorption in the long-wave and middle regions of the spectrum is associated with the penam of the benzylpenicillin molecule. The intensity of the short-wave part of the spectrum is mainly formed by electronic transitions of the benzene part of the molecule. The distribution of effective charges on benzylpenicillin fragments was calculated and analyzed using quantum chemistry methods. The proton-acceptor power of all fragments was determined in benzylpenicillin anion and their complexes with water. The transfer of effective charge was calculated during the transition from a neutral benzylpenicillin molecule to its anion, as well as during complex formation. In the neutral molecule of benzylpenicillin, the donor properties of the penam significantly exceed those of the benzyl fragment, and the side chain has a higher acceptor ability than the carboxyl group. The formation of hydrogen bonds in the benzylpenicillin molecule markedly reduces both the donor properties unit of the penam and the acceptor properties of the side chain. The changes on the benzyl and carboxyl moieties are less significant. Data analysis has established that in the benzylpenicillin anionic form the donor and acceptor properties of fragments change sharply in comparison with the neutral form. The main difference of the charged form is that the penam system becomes practically neutral, and the proton-acceptor center becomes the CCO group in the anionic form. Keywords: benzylpenicillin sulfoxide, absorption spectra, effective charges, proton acceptor, H-bonding.
  1. V.G. Alekseev. Bioenergeticheskaya khimiya penitsillinov i tsefalosporinov (Tverskoy gosudarstvennyi universitet, Tver, 2009)(in Russian)
  2. E. Gale, E. Cundliffe, P. Reynolds, M. Richmond, M. Waring, Molekulyarnye osnovy deistviya antibiotikov, (Mir, M., 1975) (in Russian)
  3. L.S. Strachunsky, S.N. Kozlov. Sovremennaya antimikrobnaya khimioterapiya (Borges, M., 2002) (in Russian)
  4. V.G. Alekseev. Khimiko-farmatsevticheskij zhurnal, 44 (1) 16 (2010) (in Russian)
  5. V. Gil-Ocana, I.M. Jimenez, C. Mayorga, I. Dona, J.A. Cespedes, M.I. Montanez, Y. Vida, M.J. Torres, E. Perez-Inestrosa. Frontiers in Immunology, 12, 750109-1 (2021). DOI: 10.3389/fimmu.2021.750109
  6. S. You, Y. Xie, Q. Yu, H. Chen, Y. Qin, J. Cao, T. Lan. Biochemical Engineering J., 180, 108335 (2022). DOI: 10.1016/j.bej.2022.108335
  7. O.A. Petrov, A.A. Maksimova,A.E. Rassolova, G.A. Gamov, V.U. Maizlish. Zhurnal fizicheskoy khimii, 93 (9), 1290 (2023) (in Russian). DOI: 10.31857/S0044453723090157
  8. N.C. Cohen. J. Medic. Chemistry, 26 (2), 259 (1989). DOI: 10.1021/jm 00356a 027
  9. J.-M. Frere, J.A. Kelly, D. Klein, J.M. Ghuysen, P. Claes, H. Vanderhaeghe. Biochem. J., 203 (1), 223 (1982). DOI: 10.1042/bj2030223
  10. J. Frau, M. Coll, J. Donoso, F. Munoz, F. Garcia Blanco. J. Molec. Struct. (Theochem), 231, 109 (1991). DOI: 10.1016/0166-1280(91)85144-V
  11. C.M. Dobson, L.O. Ford, S.E. Sumners, J.P. Williams. J. Chem. Soc., 2, 1145 (1975)
  12. S. Wolfe, M. Khalil, D.F. Weaver. Can. J. Chem., 66, 2715 (1988)
  13. S. Wolfe, K. Yang, M. Khalil. Ca. J. Chem., 66, 2733 (1988)
  14. V.Ya. Artyukhov, A.I. Galeeva, Izv. vuzov. Fizika, 29 (11), 96 (1986) (in Russian)
  15. V.Ya. Artuykhov. J. Struct. Chem., 19, 364 (1978). DOI: 10.1007/BF 0075 3260
  16. E. Scroco, J. Tomasi. Adv. Quantum. Chem., 11, 115 (1978)
  17. V.A. Blatov. Poluempiricheskie raschetnye metody kvantovoy khimii [uchebnoe posobie] (Univers-grupp, Samara, 2005) (in Russia)
  18. M.J. Dewar, R.C. Dougherty. The PMO Theory of Organic Chemistry (Springer, US, 2012)
  19. D.D. Dexter, J.M. Veen. J. Chem. Soc. Perkin I., 3, 185 (1978). DOI: 10.1039/P19780000185
  20. V.S.R. Rao, T.K. Vasudevan. Critical Reviews in Biochemistry, 14 (3), 173 (1983). DOI: 10.3109/10409238309102793
  21. B.P. Nikol'sky, V.A. Rabinovich Spravochnik khimika. Tom 1. Obshchie svedeniya; Stroenie veshchestva; Svoistva vazhneishikh veshchestv; Laboratornaya tekhnika (Khimiya, M.-L., 1966) (in Russian)
  22. A.K. Zhernosek. Farmatsevticheskaya khimiya: prakticheskoe rukovodstvo: [uchebno-metodicheskoe posobie]. Ch. 1 (UO "Vitebsky gosudarstvennyi meditsinsky unuversitet", Vitebsk, Ministerstvo zdravookhraneniya Respubliki Belarus, 2010) (in Russian)
  23. E. Stern, K. Timmons. Elektronnaya absorbtsionnaya spektroskopiya v organicheskoi khimii (Mir, M., 1974) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru