The Structure of low-lying electromic states of the polar Rb2Cs trimer based on ab initio calculations
Bormotova E. A. 1, Likharev A. S.1, Kopylov K. E.2,3, Krotov V. V.2,3, Kozlov S. V.1, Stolyarov A. V. 1
1Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
2University Gymnasium, Lomonosov Moscow State University, Moscow, Russia
3Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
Email: bormotova.e.a@gmail.com, avstol@gmail.com

PDF
Ab initio quantum chemical calculations of the electronic structure of the ground and low-lying doublet and quartet states of the Rb2Cs molecule were performed, as a result of which 3D potential energy* 1 surfaces (PES) were obtained simulating the approach of a Rb atom towards a RbCs dimer aimed at bothe the Cs atom and the Rb atom at different angles of attack varying in the range from 10o to 180o. It is shown that the ground state of the heteronuclear trimer (1)2A' exhibits an avoided crossong with the first excited (2)2A' state near the equilibrium geometry, therefore the ground state of Rb2Cs cannot be described within the framework of the traditional adiabatic approximation. For all 12 electronic states studied, equilibrium parameters corresponding to the C2v point group were determined. The constructed PES can be used for quantum calculation of collision cross sections and rate constants for the reaction of an RbCs dimer with a Rb atom, as well as conducting detailed analyses of the rovibronic structure of the trimer by solving the 3D vibrational-rotational Schrödinger equation in order to find optimal ways for laser synthesis, cooling and manipulation of the ultracold ensemble of this atomic-molecular system. Keywords: quantum chemical calculations, electromic structure, potential energy surfaces, heteronuclear trimers, alkali metals, ultracold molecules.
  1. B.R. Heazlewood, T.P. Softley. Nat. Rev. Chem., 5, 125-140 (2021). DOI: 10.1038/s41570-020-00239-0
  2. M.G. Hu, Y. Liu, M.A. Nichols, L. Zhu, G. Quemener, O. Dulieu, K.K. Ni. Nat. Chem., 13 (May), 435-440 (2021). DOI: 10.1038/s41557-020-00610-0
  3. M. Gacesa, J.N. Byrd, J. Smucker, J.A. Montgomery, R. C\^ote. Phys. Rev. Res., 3 (2), 1-14 (2021). DOI: 10.1103/PhysRevResearch.3.023163
  4. R. Sawant, J.A. Blackmore, P.D. Gregory, J. Mur-petit, D. Jaksch, J. Aldegunde, J.M. Hutson, M.R. Tarbutt, S.L. Cornish. New J. Phys., 22, 013027 (2020). DOI: 10.1088/1367-2630/ab60f4
  5. A. Kruckenhauser, L.M. Sieberer, L. De Marco, J.R. Li, K. Matsuda, W.G. Tobias, G. Valtolina, J. Ye, A.M. Rey, M.A. Baranov, P. Zoller. Phys. Rev. A, 102 (2), 1-19 (2020). DOI: 10.1103/PhysRevA.102.023320
  6. J. Klos, H. Li, E. Tiesinga, S. Kotochigova. New J. Phys., 24 (2), 025005 (2022). DOI: 10.1088/1367-2630/ac50ea
  7. M. Karra, K. Sharma, B. Friedrich, S. Kais, D.R. Herschbach. J. Chem. Phys., 144 (9) (2016). DOI: 10.1063/1.4942928
  8. P.D. Gregory, J.A. Blackmore, F.M. D, L.M. Fernley, S.L. Bromley, J.M. Hutson, S.L. Cornish. New J. Phys., 23 (12), 125004 (2021). DOI: 10.1088/1367-2630/ac3c63
  9. B. Zhu, B. Gadway, J. Schachenmayer, M.L. Wall, K.R.A. Hazzard, B. Yan, S.A. Moses, J.P. Covey, D.S. Jin, J. Ye, M. Holland, A.M. Rey. Phys. Rev. Lett., 112, 070404 (2014). DOI: 10.1103/PhysRevLett.112.070404
  10. L. Anderegg, S. Burchesky, Y. Bao, S.S. Yu, T. Karman, E. Chae, K.K. Ni, W. Ketterle, J.M. Doyle. Science, 373 (August), 779-782 (2021). DOI: 10.1126/science.abg9502
  11. E.A. Pazyuk, A.V. Zaitsevskii, A.V. Stolyarov, M. Tamanis, R. Ferber. Rus. Chem. Rev., 84 (10), 1001-1020 (2015). DOI: 10.1070/RCR4534
  12. T.A. Isaev. Physics Uspekhi, 190 (03), 313-328 (2020). DOI: 10.3367/ufnr.2018.12.038509
  13. L. Kranabetter, H.H. Kristensen, C.A. Schouder, H. Stapelfeldt. J. Chem. Phys., 160 (13), 1-7 (2024). DOI: 10.1063/5.0200389
  14. J. Schnabel, T. Kampschulte, S. Rupp, J.H. Denschlag, A. Kohn. Phys. Rev. A, 103 (2), 022820 (2021). DOI: 10.1103/PhysRevA.103.022820
  15. P. Jasik, J. Kozicki, T. Kilich, J.E. Sienkiewicz, N.E. Henriksen. Phys. Chem. Chem. Phys., 20 (27), 18663-18670 (2018). DOI: 10.1039/c8cp02551g
  16. M.D. Frye, J.M. Hutson. New J. of Phys., 23 (12) (2021). DOI: 10.1088/1367-2630/ac3ff8
  17. H. Jing, J. Cheng, P. Meystre. Phys. Rev. A, 77 (4), 1-8 (2008). DOI: 10.1103/PhysRevA.77.043614
  18. V. Olaya, J. P.erez-Ri os, F. Herrera. Phys. Rev. A, 101 (3), 1-12 (2020). DOI: 10.1103/PhysRevA.101.032705
  19. M. v Smia kowski, M. Tomza. Phys. Rev. A, 101 (1) (2020). DOI: 10.1103/PhysRevA.101.012501
  20. P. Soldan. Phys. Rev. A, 82 (3), (2010). DOI: 10.1103/PhysRevA.82.034701
  21. T.V. Tscherbul, G. Barinovs, J. K os, R.V. Krems. Phys. Rev. A, 78, 022705 (2008). DOI: 10.1103/PhysRevA.78.022705
  22. P.S. Zuchowski, J.M. Hutson. Phys. Rev. A, 81 (6), 060703 (2010). DOI: 10.1103/PhysRevA.81.060703
  23. M. Tomza, K.W. Madison, R. Moszynski, R.V. Krems. Phys. Rev. A, 88, 050701(R) (2013). DOI: 10.1103/PhysRevA.88.050701
  24. E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov, W. Skomorowski, I. Majewska, R. Moszynski. Phys. Rev. A, 99 (1), 12507 (2019). DOI: 10.1103/PhysRevA.99.012507
  25. E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov. Phys. Chem. Chem. Phys., 20 (3), 1889-1896 (2018). DOI: 10.1039/C7CP05548J
  26. E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov, I. Majewska, R. Moszynsky. Phys. Chem. Chem. Phys., 23 (9), 5187-5198 (2021). DOI: 10.1039/D0CP06487D
  27. E.A. Bormotova, A.S. Likharev, A.V. Stolyarov. Opt. i spektr., 131 (9), 1163-1172 (2023) (in Russian). DOI: 10.61011/EOS.2024.07.59642.6426-24
  28. I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll. J. Chem. Phys., 122 (10), 104103 (2005). DOI: 10.1063/1.1856451
  29. W. Muller, J. Flesch, W. Meyer. J. Chem. Phys., 80, 3297 (1984). DOI: doi:10.1063/1.447083
  30. A. Zaitsevskii, N.S. Mosyagin, A.V. Stolyarov, E. Eliav. Phys. Rev. A, 96 (2), 1-9 (2017). DOI: 10.1103/PhysRevA.96.022516
  31. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database, NIST, Gaithersburg, MD. (2023). https://physics.nist.gov/asd
  32. H. Werner, P. Knowles, G. Knizia, F. Manby, M. Schutz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, et al. Molpro, version 2010.1, a package of ab initio programs (2010). http://www.molpro.net
  33. A. Allouche, M. Korek, K. Fakherddin, A. Chaalan, M. Dagher, F. Taher, M. Aubert-Frecon. J. Phys. B, 23, 2307-2316 (2000). DOI: 10.1088/0953-4075/33/12/312
  34. J. Lozeille, A. Fioretti, C. Gabbanini, Y. Huang, H.K. Pechkis, D. Wang, P.L. Gould, E.E. Eyler, W.C. Stwalley, M. Aymar, O. Dulieu. Eur. Phys. J. D, 39 (2), 261-269 (2006). DOI: 10.1140/epjd/e2006-00084-4
  35. S.V. Kozlov, E.A. Bormotova, A.A. Medvedev, E.A. Pazyuk, A.V. Stolyarov, A. Zaitsevskii. Phys. Chem. Chem. Phys., 22, 2295-2306 (2020). DOI: 10.1039/C9CP06421D

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru