Effect of excitation intensity and temperature on photoluminescence of thin films of the Cu2ZnSnSe4 compound
Zhivulko V.D.
1, Mudryi A.V.
1, Lutsenko E.V.
2, Pavlovskii V.N.
2, Yablonskii G.P.
2, Forbes I.
3, Yakushev M.V.
4,5,61Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
2B.I.Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
3Northumbria Photovoltaic Application Group, Faculty of Engineering and Environment, Northumbria University, Ellison Place, Newcastle upon Tyne, UK
4M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
5Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
6Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
Email: zhivulko@physics.by, mudryi@physics.by
The results of the study of the phase composition, structural characteristics and photoluminescence (PL) of thin films of the direct-gap compound Cu2ZnSnSe4 (CZTSe) with the kesterite structure are presented. X-ray spectral local microanalysis with energy dispersion showed that the ratio of elements in the CZTSe compound is: [Cu]/[Zn +Sn]~ 0.75 and [Zn]/[Sn]~ 1.17. Using X-ray diffraction analysis, the unit cell parameters of the CZTSe compound thin films were determined to be: a~ 5.692 Angstrem and c~ 11.33 Angstrem. Based on the measurement data of PL spectra and PL excitation spectra at temperatures in the range of 6-300 K, the band gap width E_g~ 1.052 eV of CZTSe thin films, the position of the energy levels of structure defects in the band gap were determined, and the mechanisms of radiative recombination of nonequilibrium charge carriers were established. The nature of growth defects in the structure of the CZTSe compound is discussed. Keywords: Cu2ZnSnSe4, thin films, photoluminescence, band gap width, energy levels of defects.
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Xao. Prog. Photovolt. Res. Appl. 32, 1, 3 (2024)
- P. Jackson, D. Hariskos, R. Wuerz, W. Wischman, M. Powalla. Phys. Status Solidi RRL 8, 3, 219 (2014)
- P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla. Phys. Status Solidi RRL 10, 8, 583 (2016)
- T. Kato, J.L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez. IEEE J. Photovolt. 9, 1, 325 (2019)
- A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke. Science. V. 352, Is. 6283.-P.aad4424-1-aad4424-10 (2016)
- M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto. IEEE J. Photovolt., 9, 6, 1863 (2019)
- J. Zhou, X. Xu, H. Wu, J. Wang, L. Lou, K. Yin, Y. Gong, J. Shi, Y. Lou, D. Li, H. Xin, Q. Meng. Nature Energy 8, 5, 526 (2023)
- T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi. Appl. Phys. Lett. 103, 10, 103506 (2013)
- M. Grossberg, J. Krustok, K. Timmo, A. Altosaar. Thin Solid Films 517, 36, 2489 (2009)
- S. Oueslati, G. Brammertz, M. Buffiere, C. Koble, T. Oualid, M. Meuris, J. Poortmans. Sol. Energy Mater. Sol. Cells. 134, 340 (2016)
- M.V. Yakushev, J. Marquez-Prieto, I. Forbes, J. Krustok, P.R. Edwards, V.D. Zhivulko, A.V. Mudryi, J. Krustok, R.W. Martin. J. Phys. D 48, 475109 (2015)
- J. Marquez-Prieto, M.V. Yakushev, I. Forbes, J. Krustok, P.R. Edwards, V.D. Zhivulko, O.M. Borodavchenko, A.V. Mudryi, M. Dimitrievska, V. Izquerdo-Roca, N.M. Pearsall, R.W. Martin. Sol. Energy Mater. Sol. Cells 152, 42 (2016)
- M.V. Yakushev, M.A. Sulimov, J. Marquez-Prieto, I. Forbes, J. Krustok, P.R. Edwards, V.D. Zhivulko, O.M. Borodavchenko, A.V. Mudryi, M. Dimitrievska, V. Izquerdo-Roca. Sol. Energy Mater. Sol. Cells 169, 69 (2017)
- F. Luckert, D.I. Hamilton, M.V. Yakushev, N.S. Beattie, G. Zoppi, M. Moynihan, I. Forbes, A.V. Karotki, A.V. Mudryi, G. Grossberg, J. Krustok, R.W. Martin. Appl. Phys. Lett. 99, 6, 062104 (2011)
- S. Siebentritt, S. Schorr. Prog. Photovolt. Res. Appl. 20, 5, 512 (2012)
- D.M. Bishop, B. McCandless, T. Gershon, M.A. Lloyd, P. Haight, R. Birkmire. J. Appl. Phys. 121, 065704 (2017)
- G. Rey, G. Larramona, S. Bourdais, C. Chone, B. Delatouche, A. Jacob, G. Dennler. Sol. Energy Mater. Sol. Cells 179, 142 (2018)
- J. Sendler, M. Thevenin, F. Werner, A. Redinger, S. Li, C. Hagglund, C. Platzer-Bjorkman, S. Siebentritt. J. Appl. Phys. 120, 12, 125701 (2016)
- F.I. Lai, D.H. Hsieh, J.F. Yang, Y.C. Hsu, S.Y. Kuo. Sol. Energy 251, 240 (2023)
- I Mengu, J. Krustok, R. Kaupmees, V. Mikli, M. Kauk-Kuusik, M. Grossberg-Kuusk. Mater. Chemistry. Phys. 301, 127685 (2023)
- A.P. Levanyuk, V.V. Osipov. Uspekhi fizicheskikh nauk, 133, 3, 427 (1981) (in Russian)
- R.W. Martin, P.G. Middleton, K.P. O'Donnell, W. Van der Stricht. Appl. Phys. Lett. 74, 2, 263 (1999)
- B.I. Shklovsky, A.L. Efros. Elektronnye svojstva legirovannykh poluprovodnikov. Nauka, M. (1979). 416 p. (in Russian)
- I. Dirnstorfer, M. Wagner, D.M. Hofmann, M.D. Lampert, F. Karg, B.K. Meyer. Phys. Stat. Sol. A 168, 163 (1998)
- S. Thomas, T. Bertram, C. Kaufman, T. Kodalle, J.A. Marquez Prieto, H. Hempel, L. Choubrac, W. White, D. Hariskos, R. Mainz, R. Carron, J. Keller, P. Reyes-Figueroa, R. Klenk, D. Abou-Ras. Prog. Photovolt: Res. Appl., 30, 1238 (2022)
- M.V. Yakushev, I. Forbes, A.V. Mudryi, M. Grossberg, J. Krustok, N.S. Beattie, M. Moynihan, A. Rockett, R.W. Martin. Thin Solid States, 582, 154 (2015)
- S. Chen, A. Walsh, Xin-Gao Gong, Su-Huai Wei. Adv. Mater. 25, 1522 (2013)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.