Physics of the Solid State
Volumes and Issues
Formation of ferromagnetic semiconductor GaMnAs by ion implantation: comparison of different types of annealing
Vikhrova O. V.1, Danilov Yu. A. 1, Dydin Yu. A.1, Zdoroveyshchev A.V.1, Kalentyeva I.L.1, Kydrin A.V. 1, Kryukov R. N.1, Nezhdanov A. V.1, Parafin A. E.2, Tapero M. K. 3,4, Temiryazeva M.P. 5, Temiryazev A.G.5, Yakovleva A.A.1
1Lobachevsky State University, Nizhny Novgorod, Russia
2Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
3National University of Science and Technology MISiS, Moscow, Russia
4Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
5Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: vikhrova@nifti.unn.ru

PDF
The preparation of the ferromagnetic semiconductor GaMnAs by ion implantation and three types of annealing is considered: rapid thermal, pulsed laser, and combined annealing (a combination of rapid thermal and pulsed laser annealing). Rapid thermal annealing contributed to the improvement of crystallinity and the formation of clusters (including ferromagnetic ones at room temperature), and subsequent exposure to laser radiation led to their modification. When studying the structural, galvanomagnetic and magneto-optical properties, the formation of two ferromagnetic phases, differing in Curie temperature, was revealed in GaMnAs layers. Keywords: ion implantation, rapid thermal annealing, pulsed laser annealing, two-phase ferromagnetic semiconductor.
  1. T. Dietl. Semicond. Sci. Technol. 17, 4, 377 (2002)
  2. L. Chen, S. Yan, P.F. Xu, J. Lu, W.Z. Wang, J.J. Deng, X. Qian, Y. Ji, J.H. Zhao. Appl. Phys. Lett. 95, 18, 182505 (2009)
  3. Yu.A. Danilov, A.V. Kruglov, E.A. Pitirimova, Yu.N. Drozdov, A.V. Murel, M. Behar, M.A.A. Pudenzi. Izv. RAN. Ser. fiz. 68, 1, 65 (2004). (in Russian)
  4. O.D.D. Couto Jr, M.J.S.P. Brasil, F. Iikawa, C. Giles, C. Adriano, J.R.R. Bortoleto, M.A.A. Pudenzi, H.R. Gutierrez, I. Danilov. Appl. Phys. Lett. 86, 7, 071906 (2005)
  5. M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro, M.R. Pillai, M.J. Aziz, M.C. Ridgway. Appl. Phys. Lett. 82, 8, 1251 (2003)
  6. S. Zhou. J. Phys. D 48, 26, 263001 (2015)
  7. A.I. Ryabchikov, S.V. Dektjarev, I.B. Stepanov. Rev. Sci. Instrum. 65, 10, 3126 (1994)
  8. I.G. Brown, X. Godechot. IEEE Trans. Plasma Sci. 19, 5, 713 (1991)
  9. Electronic source. https://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software
  10. Electronic source. https://www.iucr.org/resources/other-directories/software/ptclab
  11. Electronic source: http://www.crystallography.net
  12. T.E. Sukhanova, M.P. Temiryazeva, M.E. Vylegzhanina, S.V. Valueva, A.Ya. Volkov, A.A. Kutin, A.G. Temiryazev. AIP Conf. Proceed. 1748, 1, 020003 (2016)
  13. S.K. Kuznetsova. Neorg. mater. 11, 5, 950 (1975). (in Russian)
  14. M. Wu, E. Luna, J. Puustinen, M. Guina, A. Trampert. Nanotechnol. 25, 20, 205605 (2014)
  15. A. Maltsi, T. Niermann, T. Streckenbach, K. Tabelow, T. Koprucki. Opt. Quant. Electron. 52, 257 (2020)
  16. M. Moreno, A. Trampert, B. Jenichen, L. Daweritz, K.H. Ploog. J. Appl. Phys. 92, 8, 4672 (2002)
  17. W.G. Opyd, J.F. Gibbons, A.J. Mardinly. Appl. Phys. Lett. 53, 16, 1515 (1988)
  18. W. Limmer, M. Glunk, S. Mascheck, A. Koeder, D. Klarer, W. Schoch, K. Thonke, R. Sauer, A. Waag. Phys. Rev. B 66, 20, 205209 (2002)
  19. M.J. Seong, S.H. Chun, H.M. Cheong, N. Samarth, A. Mascarenhas. Phys. Rev. B 66, 3, 033202 (2002)
  20. Yu.A. Danilov, Yu.A. Agafonov, V.I. Bachurin, V.A. Bykov, O.V. Vikhrova, V.I. Zinenko, I.L. Kalentyeva, A.V. Kudrin, A.V. Nezhdanov, A.E. Parafin, S.G. Simakin, P.A. Yunin, A.A. Yakovleva. Phys. Solid State 65, 12, 2138 (2023)
  21. M.A. Scarpulla, R. Farshchi, P.R. Stone, R.V. Chopdekar, K.M. Yu, Y. Suzuki, O.D. Dubon. J. Appl. Phys. 103, 7, 073913 (2008)
  22. A.V. Kudrin, O.V. Vikhrova, Yu.A. Danilov. Tech. Phys. Lett. 36, 6, 511 (2010)
  23. K.Y. Wang, K.W. Edmonds, R.P. Campion, L.X. Zhao, C.T. Foxon, B.L. Gallagher. Phys. Rev. B 72, 8, 085201 (2005)
  24. K. Ando, H. Saito, K.C. Agarwal, M.C. Debnath, V. Zayets. Phys. Rev. Lett. 100, 6, 067204 (2008)
  25. B.I. Shklovsky, A.L. Efros. Elektronnye svojstva legirovannykh poluprovodnikov. Nauka, M. (1979). 416 s. (in Russian)
  26. W. Limmer, M. Glunk, W. Schoch, A. Koder, R. Kling, R. Sauer, A. Waag. Physica E 13, 2--4, 589 (2002)
  27. A. Arrott. Phys. Rev. 108, 6, 1394 (1957)
  28. A.V. Kudrin, A.V. Shvetsov, Yu.A. Danilov, A.A. Timopheev, D.A. Pavlov, A.I. Bobrov, N.V. Malekhonova, N.A. Sobolev. Phys. Rev. B 90, 2, 024415 (2014)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru