Electrodynamic processes in a spiral MHD pump of transformer type
S.Yu. Khripchenko 1, E.Yu.Tonkov 1
1Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, Perm, Russia
Email: khripch@icmm.ru

PDF
The creation of nuclear power plants using lead as a coolant makes it relevant to study and design devices capable of effectively pumping it. The purpose of this study is to evaluate the efficiency of the pressure developed in the stop mode by a spiral-MHD pump of a transformer type, capable of creating high pressures even when working with low-conductivity liquid metals. The paper presents a numerical simulation of electrodynamic processes in such a pump. The paper presents an estimated analytical dependence that helps to compare the characteristics of various versions of the designed pump without calculation packages. As part of the verification of the mathematical model, the experimentally studied design was calculated using the estimated form and numerical model. The paper presents the pump characteristics in the stop mode for some of its design options, as well as when it works with metals of different electrical conductivities. A comparison of calculations using the estimated formula and the numerical model with the experimental results was made. It is shown that the pump can create high pressures of the order of units of megapascals, working even with metals such as liquid lead, which has low electrical conductivity. Keywords: MHD pump, magnetic hydrodynamics, numerical modeling, COMSOL Multiphysics, liquid lead.
  1. A.I. Vol'dek. Induktsionnye magnitogidrodinamicheskie mashiny s zhidkometallicheskim rabochim telom (Energiya, L., 1970) (in Russian)
  2. Yu.A. Birzvalk. Osnovy teorii rascheta konduktsionnykh nasosov postoyannogo toka (Zinatne, Riga, 1968) (in Russian)
  3. L.K. Brekson, N.I. Glazkov, V.D. Egorov, Yu.F. Merenkov, S.R. Troitskii Eksperimental'noe issledovanie odnofaznogo MGD-Nasosa s elektromagnitnoi asimmetriei (Devyatoe Rizhskoe soveshchanie po magnitnoi gidrodinamike, chast' II, tezisy dokladov, Riga, 1978), pp. 53-54 (in Russian)
  4. Yu.F. Merenkov, I.V. Popkov. Elektromagnitnyi nasos AS N 02N 4/20. SU Patent No. 898575. Published on January 15, 1982. Byull. Izobret. No. 2 (in Russian)
  5. S.Yu. Khripchenko, V.M. Dolgikh. Elektromagnitnyi induktsionnyi nasos dlya zhidkikh provodyashchikh sred (RF Patent No. 2810528, Application No. 2023119291) (in Russian)
  6. I.E. Idel'chik. Spravochnik po gidravlicheskim soprotivleniyam. 3-e izdanie, pererabotannoe i dopolnennoe (Mashinostroenie, M., 1992) (in Russian)
  7. C. Alberghi, L. Candido, R. Testoni, M. Utili, M. Zucchetti. Energies, 14 (17), 5413 (2021). DOI: 10.3390/en14175413
  8. M. Zaja, A.A. Razi-Kazemi, D. Jovcic. High Voltage, 5 (5), 549 (2019). DOI: 10.1049/hve.2019.0387
  9. L.P. Aoki, H.E. Schulz, M.G. Maunsell. An MHD Study of the Behavior of an Electrolyte Solution using 3D Numerical Simulation and Experimental results. Excerpt from the Proceedings of 2013 COMSOL Conferece in Boston, 15, 65 (2013)
  10. S.D. Samuilov, I.P. Shcherbakov, Y.N. Bocharov, S.I. Krivosheev, S.G. Magazinov. Tech. Phys., 68 (8), 1108 (2023). DOI: 10.61011/TP.2023.08.57273.61-23
  11. A.D. Podol'tsev, L.N. Kontorovich. Tekh. Elektrodin., 6, 3 (2011) (in Russian)
  12. C.R. Vargas-Llanos, F. Huber, N. Riva, M. Zhang, F. Grilli. Superconductor Sci. Technol., 35, 41 (2022)
  13. N.E. Jewell-Larsen, S.V. Karpov, I.A. Krichtafovitch, V. Jayanty, Ch.-P. Hsu, A.V. Mamishev. ESA Annual Meeting on Electrostatics, 1, 20 (2008)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru