Structure and dielectric characteristics of SrTiO3(111)/Al2O3(001) films fabricated by RF sputtering
Pavlenko A. V. 1, Stryukov D. V. 1, Zhidel K. M. 1, Matyash Ya. Yu. 1, Shishkina P. A.2, Chumak M. S.2
1Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russia
2Scientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
Email: tolik_260686@mail.ru, strdl@mail.ru, karinagidele@gmail.com, matyash.ya.yu@gmail.com, maxvell1331@mail.ru

PDF
SrTiO3 thin films were grown on an Al2O3(001) substrate in an oxygen atmosphere using a one-stage method of high-frequency cathode sputtering of a strontium titanate ceramic target. It is shown that the obtained SrTiO3 films with a thickness of ~ 120 nm are single-phase, pure and single-crystalline (surface roughness ~ 8.5 nm, lateral size of growth blocks ~ 100 nm). The magnitude of the unit cell strain in comparison with the bulk single crystal, the mutual orientations between unit cells of the film and the substrate, as well as the band gap for the direct allowed transition and the indirect one have been established. The dielectric characteristics of the films had been measured, the results of which indicating that the films are in the paraelectric phase at room temperature. Keywords: thin films, dielectric characteristics, heteroepitaxy, STO.
  1. L.W. Martin, A.M. Rappe. Nat. Rev. Mater., 2, 16087 (2016). DOI: 10.1038/natrevmats.2016.87
  2. K. Yao, S. Chen, S.C. Lai, Y.M. Yousry. Adv. Sci., 9, 2103842 (2022). DOI: 10.1002/advs.202103842
  3. M. Botea, C. Chirila, G.A. Boni, I. Pasuk, L. Trupina, I. Pintilie, L.M. Hrib, B. Nicu, L. Pintilie. Electron. Mater., 3 (2), 173 (2022). DOI: 10.3390/electronicmat3020015
  4. A.S. Anokhin, S.V. Biryukov, Yu.I. Golovko, V.M. Mukhortov. Nauka Yuga Ross., 14 (1), 29 (2018) (in Russian). DOI: 10.23885/2500-0640-2018-14-1-29-34
  5. A. Baki, M. Abdeldayem, C. Morales, J.I. Flege, D. Klimm, O. Bierwagen, J. Schwarzkopf. Crystal Growth \& Design., 23 (4), 2522 (2023). DOI: 10.1021/acs.cgd.2c01438
  6. V.A. Gritsenko, D.R. Islamov. Fizika dielektricheskikh plenok: mekhanizmy transporta zaryada i fizicheskie osnovy priborov pamyati (Parallel', Novosibirsk, 2017) (in Russian)
  7. C. Ang, Z. Yu, P.M. Vilarinho, J.L. Baptista. Phys. Rev. B, 57 (13), 7403 (1998). DOI: 10.1103/PhysRevB.57.7403
  8. M. Itoh, R. Wang. Appl. Phys. Lett., 76 (2), 221 (2000). DOI: 10.1063/1.125708
  9. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom. Nature, 430, 758 (2004). DOI: 10.1038/nature02773
  10. R. Wordenweber, E. Hollmann, R. Ott, T. Hurtgen, T.K. Lee. J. Electroceram., 22, 363 (2009). DOI: 10.1007/s10832-007-9399-5
  11. S.A. Kukushkin, A.V. Osipov. Phys.-Usp., 41, 983 (1998). DOI: 10.1070/PU1998v041n10ABEH000461
  12. A. Venables, G.D.T. Spiller, M. Hanbucken. Rep. Prog. Phys., 47, 399 (1984). DOI: 10.1088/0034-4885/47/4/002
  13. D.W. Pashley. Adv. Phys., 14, 327 (1965). DOI: 10.1080/00018736500101071
  14. S. Zollner, A.A. Demkov, R. Liu, P.L. Fejes, R.B. Gregory, P. Alluri, J.A. Curless, Z. Yu, J. Ramdani, R. Droopad, T.E. Tiwald, J.N. Hilfiker, J.A. Woollam. J. Vac. Sci. Technol. B, 18 (4), 2242 (2000). DOI: 10.1116/1.1303741
  15. C.-H. Lee, N.J. Podraza, Y. Zhu, R.F. Berger, S. Shen, M. Sestak, R.W. Collins, L.F. Kourkoutis, J.A. Mundy, H. Wang, Q. Mao, X. Xi, L.J. Brillson, J.B. Neaton, D.A. Muller, D.G. Schlom. Appl. Phys. Lett., 102, (12), 122901 (2013). DOI: 10.1063/1.4798241
  16. V. Roge, C. Garlisi, P.L. Popa, K. Menguelti, M. Michel, C. Vergne, E. Wagner, W. Maudez, G. Benvenuti, B.R. Pistillo, E. Barborini. J. Mater. Chem. A, (2024). DOI: 10.1039/D3TA07695D
  17. Y. Gao, Y. Masuda, K. Koumoto. J. Korean Ceramic Society, 40 (3), 213 (2003). DOI: 10.4191/kcers.2003.40.3.213
  18. K. Benthem, C. Elsasser, R.H. French. J. Appl. Phys., 90 (12), 6156 (2001). DOI: 10.1063/1.1415766
  19. A. Dejneka, M. Tyunina, J. Narkilahti, J. Levoska, D. Chvostova, L. Jastrabik, V.A. Trepakov. Physics of the Solid State, 52 (10), 1943 (2010)
  20. S.I. Shablaev, A.M. Danishevskii, V.K. Subashiev, A.A. Babashkin, Fiz. Tverd. Tela, 21, 1140 (1979) (in Russian)
  21. S.I. Shablaev, A.M. Danishevskii, V.K. Subashiev. J. Exp. Theor. Phys., 59, 1256 (1984)
  22. T.S. Narasimhamurty. Photoelastic and Electrooptic Properties of Crystals (Plenum Press, NY.-London, 1981)
  23. D.O. Klenov, T.R. Taylor, S. Stemmer. J. Mater. Res., 19 (5), 1477 (2004). DOI: 10.1557/JMR.2004.0197
  24. T.R. Taylor, P.J. Hansen, N. Pervez, B. Acikel, R.A. York, J.S. Speck. J. Appl. Phys., 94 (5), 3390 (2003). DOI: 10.1063/1.1598274
  25. G. Panomsuwan, O. Takai, N. Saito. Appl. Surf. Sci., 309, 95 (2014). DOI: 10.1016/j.apsusc.2014.04.186

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru