Hybrid multiplexed pneumoelectrospray system for generation of charged microdroplets
Gromov I.A.
1, Kuleshov D. O.
2, Diachenko A. A.
2, Bulovich S. V.
3, Vasilev A. A.
31Ioffe Institute, St. Petersburg, Russia
2Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: gromov-24-2@yandex.ru
The article describes the design and presents the characteristics of a hybrid pneumoelectrospray system. It allows to significantly increase the number of charged microdroplets generated per unit time. One of the main purposes of this system is to microdroplet chemical synthesis scale up when operating as part of a microdroplet chemical reactor prototype. Keywords: electrospray, microdroplet chemical synthesis, nebulizer gas, charged microdroplets, transport electrode.
- M. Parhizkara, P.J.T. Reardonb, J.C. Knowlesb, R.J. Browningc, E. Stridec, R.B. Pedleyd, T. Gregoa, M. Edirisinghea. Mater. Design, 126, 73 (2017). DOI: 10.1016/j.matdes.2017.04.029
- B. Almeri a, T.M. Fahmy, A. Gomez. J. Controlled Release, 154 (2), 203 (2011). DOI: 10.1016/j.jconrel.2011.05.018
- A. Gomez, D. Bingham, L. De Juan, K. Tang. J. Aerosol Sci., 29 (5-6), 561 (1998). DOI: 10.1016/S0021-8502(97)10031-3
- I. Romero-Sanz, R. Bocanegra, J. Fernandez de la Mora, M. Gamero-Castano. J. Appl. Phys., 94 (5), 3599 (2003) DOI: 10.1063/1.1598281
- W. Deng, J.F. Klemic, X. Li, M. Reed, A. Gomez. Proceed. Combustion Institute, 31, 2239 (2007). DOI: 10.1016/j.proci.2006.08.080
- Y. Yang, J. Deng, Z.P. Yao. Analytica Chimica Acta, 887, 127 (2015). DOI: 10.1016/j.aca.2015.06.025
- X. Fu, Y. Wang, Y. Zhou, B. Xia. Rapid Commun. Mass Spectrom., 37 (S1), e9528 (2023). DOI: 10.1002/rcm.9528
- R.D. Espy, M. Wleklinski, X. Yan, R.G. Cooks. TrAC Trends in Analyt. Chem., 57, 135 (2014). DOI: 10.1016/j.trac.2014.02.008
- B.M. Marsh, K. Iyer, R.G. Cooks. J. American Society Mass Spectr., 30 (10), 2022 (2019). DOI: 10.1007/s13361-019-02264-w
- Z. Wei, Y. Li, R.G. Cooks, X. Yan. Annual Rev. Phys. Chem., 71, 31 (2020). DOI: 10.1146/annurev-physchem-121319-110654
- S. Banerjee, E. Gnanamani, X. Yan, R.N. Zare. Analyst, 142 (9), 1399 (2017). DOI: 10.1039/C6AN02225A
- D. Gao, F. Jin, X. Yan, R.N. Zare. Chem. Eur. J., 25, 1466 (2019). DOI: 10.1002/chem.201805585
- D.O. Kuleshov, D.M. Mazur, I.A. Gromov, E.N. Alekseyuk, N.R. Gall, O.V. Polyakova, A.T. Lebedev, L.N. Gall. J. Analyt. Chem., 75, 1647 (2020)
- A.T. Lebedev. Russ. Chem. Rev., 84 (7), 665 (2015). DOI: 10.1070/RCR4508
- H. Nie, Z. Wei, L. Qiu, X. Chen, D.T. Holden, R.G. Cooks. Chem. Sci., 11 (9), 2356 (2020). DOI: 10.1039/C9SC06265C
- H. Chen, A. Venter, R.G. Cooks. Chem. Commun., 19, 2042 (2006). DOI: 10.1039/B602614A
- C.Y. Liu, J. Li, H. Chen, R.N. Zare. Chem. Sci., 10 (40), 9367 (2019). DOI: 10.1039/C9SC03701B
- X. Yan, Y.H. Lai, R.N. Zare. Chem. Sci., 9 (23), 5207 (2018). DOI: 10.1039/C8SC01580E
- S. Garimella, W. Xu, G. Huang, J.D. Harper, R.G. Cooks, Z. Ouyang. J. Mass Spectrometry, 47 (2), 201 (2012). DOI: 10.1002/jms.2955
- J.S. Wiley, J.T. Shelley, R. Graham. Cooks Analyt. Chem., 85 (14), 6545 (2013). DOI: 10.1021/ac4013286
- A.I. Zhakin, P.A. Belov, A.E. Kuz'ko. Tech. Phys. Lett., 39 (6), 299 (2013). DOI: 10.1134/s1063785013030279
- F.K. Tadjimukhamedov, J.A. Stone, D. Papanastasiou, J.E. Rodriguez, W. Mueller, H. Sukumar, G.A. Eiceman. Intern. J. Ion Mobility Spectrometry, 11, 51 (2008). DOI: 10.1007/s12127-008-0004-7
- X. Tang, J.E. Bruce, H.H. Hill. Analyt. Chem., 78 (22), 7751 (2006). DOI: 10.1021/ac0613380
- S. Han, H. Kim, S. Lee, C. Kim. ACS Appl. Mater. Interfaces, 10 (8), 7281 (2018). DOI: 10.1021/acsami.7b18643
- W. Kim, M. Guo, P. Yang, D. Wang. Analyt. Chem., 79 (10), 3703 (2007). DOI: 10.1021/ac070010j
- W. Deng, C.M. Waits, B. Morgan, A. Gomez. J. Aerosol Sci., 40 (10), 907 (2009). DOI: 10.1016/j.jaerosci.2009.07.002
- M.H. Duby, W. Deng, K. Kim, T. Gomez, A. Gomez. J. Aerosol Sci., 37 (3), 306 (2006). DOI: 10.1016/j.jaerosci.2005.05.013
- N.S. Fomina, S.V. Masyukevich, E.N. Sviridovich, N.R. Gall. Pribory i tekhnika eksperimenta, 2, 139 (2014) (in Russian). DOI: 10.7868/S0032816214010248 [N.S. Fomina, S.V. Masyukevich, E.N. Sviridovich, N.R. Gall. Instrum. Experiment. Tech., 57, 226 (2014). DOI: 10.1134/S0020441214010205]
- I.A. Gromov, N.S. Samsonova, N.R. Gall. Tech. Phys. Lett., 45 (10), 149 (2019). DOI: 10.1134/S1063785019020275
- D.O. Kuleshov, I.A. Gromov, I.I. Pikovskoi, A.A. Onuchina, I.S. Voronov, D.M. Mazur \& A.T. Lebedev. Reaction Chemistry \& Engineering 9 (10), 2683 (2024). DOI:10.1039/D4RE00264D
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.