Hybrid multiplexed pneumoelectrospray system for generation of charged microdroplets
Gromov I.A. 1, Kuleshov D. O. 2, Diachenko A. A.2, Bulovich S. V. 3, Vasilev A. A. 3
1Ioffe Institute, St. Petersburg, Russia
2Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: gromov-24-2@yandex.ru

PDF
The article describes the design and presents the characteristics of a hybrid pneumoelectrospray system. It allows to significantly increase the number of charged microdroplets generated per unit time. One of the main purposes of this system is to microdroplet chemical synthesis scale up when operating as part of a microdroplet chemical reactor prototype. Keywords: electrospray, microdroplet chemical synthesis, nebulizer gas, charged microdroplets, transport electrode.
  1. M. Parhizkara, P.J.T. Reardonb, J.C. Knowlesb, R.J. Browningc, E. Stridec, R.B. Pedleyd, T. Gregoa, M. Edirisinghea. Mater. Design, 126, 73 (2017). DOI: 10.1016/j.matdes.2017.04.029
  2. B. Almeri a, T.M. Fahmy, A. Gomez. J. Controlled Release, 154 (2), 203 (2011). DOI: 10.1016/j.jconrel.2011.05.018
  3. A. Gomez, D. Bingham, L. De Juan, K. Tang. J. Aerosol Sci., 29 (5-6), 561 (1998). DOI: 10.1016/S0021-8502(97)10031-3
  4. I. Romero-Sanz, R. Bocanegra, J. Fernandez de la Mora, M. Gamero-Castano. J. Appl. Phys., 94 (5), 3599 (2003) DOI: 10.1063/1.1598281
  5. W. Deng, J.F. Klemic, X. Li, M. Reed, A. Gomez. Proceed. Combustion Institute, 31, 2239 (2007). DOI: 10.1016/j.proci.2006.08.080
  6. Y. Yang, J. Deng, Z.P. Yao. Analytica Chimica Acta, 887, 127 (2015). DOI: 10.1016/j.aca.2015.06.025
  7. X. Fu, Y. Wang, Y. Zhou, B. Xia. Rapid Commun. Mass Spectrom., 37 (S1), e9528 (2023). DOI: 10.1002/rcm.9528
  8. R.D. Espy, M. Wleklinski, X. Yan, R.G. Cooks. TrAC Trends in Analyt. Chem., 57, 135 (2014). DOI: 10.1016/j.trac.2014.02.008
  9. B.M. Marsh, K. Iyer, R.G. Cooks. J. American Society Mass Spectr., 30 (10), 2022 (2019). DOI: 10.1007/s13361-019-02264-w
  10. Z. Wei, Y. Li, R.G. Cooks, X. Yan. Annual Rev. Phys. Chem., 71, 31 (2020). DOI: 10.1146/annurev-physchem-121319-110654
  11. S. Banerjee, E. Gnanamani, X. Yan, R.N. Zare. Analyst, 142 (9), 1399 (2017). DOI: 10.1039/C6AN02225A
  12. D. Gao, F. Jin, X. Yan, R.N. Zare. Chem. Eur. J., 25, 1466 (2019). DOI: 10.1002/chem.201805585
  13. D.O. Kuleshov, D.M. Mazur, I.A. Gromov, E.N. Alekseyuk, N.R. Gall, O.V. Polyakova, A.T. Lebedev, L.N. Gall. J. Analyt. Chem., 75, 1647 (2020)
  14. A.T. Lebedev. Russ. Chem. Rev., 84 (7), 665 (2015). DOI: 10.1070/RCR4508
  15. H. Nie, Z. Wei, L. Qiu, X. Chen, D.T. Holden, R.G. Cooks. Chem. Sci., 11 (9), 2356 (2020). DOI: 10.1039/C9SC06265C
  16. H. Chen, A. Venter, R.G. Cooks. Chem. Commun., 19, 2042 (2006). DOI: 10.1039/B602614A
  17. C.Y. Liu, J. Li, H. Chen, R.N. Zare. Chem. Sci., 10 (40), 9367 (2019). DOI: 10.1039/C9SC03701B
  18. X. Yan, Y.H. Lai, R.N. Zare. Chem. Sci., 9 (23), 5207 (2018). DOI: 10.1039/C8SC01580E
  19. S. Garimella, W. Xu, G. Huang, J.D. Harper, R.G. Cooks, Z. Ouyang. J. Mass Spectrometry, 47 (2), 201 (2012). DOI: 10.1002/jms.2955
  20. J.S. Wiley, J.T. Shelley, R. Graham. Cooks Analyt. Chem., 85 (14), 6545 (2013). DOI: 10.1021/ac4013286
  21. A.I. Zhakin, P.A. Belov, A.E. Kuz'ko. Tech. Phys. Lett., 39 (6), 299 (2013). DOI: 10.1134/s1063785013030279
  22. F.K. Tadjimukhamedov, J.A. Stone, D. Papanastasiou, J.E. Rodriguez, W. Mueller, H. Sukumar, G.A. Eiceman. Intern. J. Ion Mobility Spectrometry, 11, 51 (2008). DOI: 10.1007/s12127-008-0004-7
  23. X. Tang, J.E. Bruce, H.H. Hill. Analyt. Chem., 78 (22), 7751 (2006). DOI: 10.1021/ac0613380
  24. S. Han, H. Kim, S. Lee, C. Kim. ACS Appl. Mater. Interfaces, 10 (8), 7281 (2018). DOI: 10.1021/acsami.7b18643
  25. W. Kim, M. Guo, P. Yang, D. Wang. Analyt. Chem., 79 (10), 3703 (2007). DOI: 10.1021/ac070010j
  26. W. Deng, C.M. Waits, B. Morgan, A. Gomez. J. Aerosol Sci., 40 (10), 907 (2009). DOI: 10.1016/j.jaerosci.2009.07.002
  27. M.H. Duby, W. Deng, K. Kim, T. Gomez, A. Gomez. J. Aerosol Sci., 37 (3), 306 (2006). DOI: 10.1016/j.jaerosci.2005.05.013
  28. N.S. Fomina, S.V. Masyukevich, E.N. Sviridovich, N.R. Gall. Pribory i tekhnika eksperimenta, 2, 139 (2014) (in Russian). DOI: 10.7868/S0032816214010248 [N.S. Fomina, S.V. Masyukevich, E.N. Sviridovich, N.R. Gall. Instrum. Experiment. Tech., 57, 226 (2014). DOI: 10.1134/S0020441214010205]
  29. I.A. Gromov, N.S. Samsonova, N.R. Gall. Tech. Phys. Lett., 45 (10), 149 (2019). DOI: 10.1134/S1063785019020275
  30. D.O. Kuleshov, I.A. Gromov, I.I. Pikovskoi, A.A. Onuchina, I.S. Voronov, D.M. Mazur \& A.T. Lebedev. Reaction Chemistry \& Engineering 9 (10), 2683 (2024). DOI:10.1039/D4RE00264D

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru