New techniques for recording and processing laser radiation absorption signals in the far peripheral zone
Davydov R.V. 1,2,3, Yakusheva M.A.1, Porfir'eva E. V.1, Davydov V. V. 1,3, Isakova D.D.3, Msokar S. 1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Alferov University, St.Petersburg, Russia
3Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia
Email: davydovroman@outlook.com, porfirieva.ev@edu.spbstu.ru, davydov_vadim66@mail.ru, souhair.msokar@gmail.com

PDF
The need to continue research is substantiated to expand the capabilities of the method for express diagnostics of the state of the human body in real time using an absorption signal that is recorded in the far peripheral zone. It is noted that modern instrument designs and methods of pulse wave signal processing have a number of disadvantages. This leads to a significant measurement error and not always reliable interpretation of the data. A new optical sensor design has been developed using a horizontal charge transfer CCD array to record a pulse wave signal in the form of steps with a higher signal-to-noise ratio. The use of a CCD array made it possible to establish the presence of a third peak in the structure of the pulse wave, in contrast to the case of its registration using a CCD matrix. It has been established that the parameters of the steps in the structure of the pulse wave line reflect the characteristics of the human cardiovascular system, which makes it possible to obtain new information, especially if the third peak is identified. To study changes in the shape of the pulse wave fronts and its peaks, a new technique has been developed, which is universal for processing pulse signals with different numbers of peaks. The patient's pulse waves recorded by two types of optical sensors and the results of studying their rising, falling and peak fronts are presented. Keywords: blood flow, pulse wave, laser radiation, absorption signal, CCD array, oxygen, time, rising and falling front, measurement error.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru