New techniques for recording and processing laser radiation absorption signals in the far peripheral zone
Davydov R.V.
1,2,3, Yakusheva M.A.
1, Porfir'eva E. V.
1, Davydov V. V.
1,3, Isakova D.D.
3, Msokar S.
11Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Alferov University, St.Petersburg, Russia
3Bonch-Bruevich St. Petersburg State University of Telecommunications, St. Petersburg, Russia
Email: davydovroman@outlook.com, porfirieva.ev@edu.spbstu.ru, davydov_vadim66@mail.ru, souhair.msokar@gmail.com
The need to continue research is substantiated to expand the capabilities of the method for express diagnostics of the state of the human body in real time using an absorption signal that is recorded in the far peripheral zone. It is noted that modern instrument designs and methods of pulse wave signal processing have a number of disadvantages. This leads to a significant measurement error and not always reliable interpretation of the data. A new optical sensor design has been developed using a horizontal charge transfer CCD array to record a pulse wave signal in the form of steps with a higher signal-to-noise ratio. The use of a CCD array made it possible to establish the presence of a third peak in the structure of the pulse wave, in contrast to the case of its registration using a CCD matrix. It has been established that the parameters of the steps in the structure of the pulse wave line reflect the characteristics of the human cardiovascular system, which makes it possible to obtain new information, especially if the third peak is identified. To study changes in the shape of the pulse wave fronts and its peaks, a new technique has been developed, which is universal for processing pulse signals with different numbers of peaks. The patient's pulse waves recorded by two types of optical sensors and the results of studying their rising, falling and peak fronts are presented. Keywords: blood flow, pulse wave, laser radiation, absorption signal, CCD array, oxygen, time, rising and falling front, measurement error.
- A.F. Guedes, F.A. Carvalho, C. Moreira, J.B. Nogueira, N.C. Santos. Nanoscale, 9 (39), 14897 (2017). DOI: 10.1039/c7nr03891g
- C. Leitao, V. Ribau, V. Afreixo, P. Antunes, P. Andre, J.L. Pinto, P. Boutouyrie, S. Laurent, J.M. Bastos. Hypertens Res., 41 (11), 904 (2018). DOI: 10.1038/s41440-018-0089-2
- E.D. Gommer, E. Shijaku, W.H. Mess, J.P.H. Reulen. Med. Biolog. Eng. and Computing, 48 (12), 1243 (2010). DOI: 10.1007/s11517-010-0706-y
- J.-W. Luo, S.-W. Guo, Sh.-Sh. Cao, N. Lin, Zh.-Sh. Ye, Sh.-Ch. Wei, X.-Yu Zheng, M.-M. Guo, X.-R. Meng, F.-M. Huang. Evidence-Based Complementary and Alternative Medicine, 2016, 2468254 (2016). DOI: 10.1155/2016/2468254
- R. Guo, Yi. Wang, H. Yan, J. Yan, F. Yuan, Zh. Xu, G. Liu, W. Xu. Evidence-Based Complementary and Alternative Medicine, 2015, 895749 (2015). DOI: 10.1155/2015/895749
- A. Mehmood, A. Sarouji, M.M.U. Rahman, T.Y. Al-Naffouri. Scientific Reports, 13 (1), 19277 (2023). DOI: 10.1038/s41598-023-45933-3
- V.V. Davydov, E.V. Porfir'eva, R.V. Davydov. Russ. J. Nondestructive Testing, 58 (9), 847 (2022). DOI: 10.1134/S1061830922090042
- O.K. Baskurt, H.J. Meiselman. Semin. Thromb. Hemost., 29 (5), 435 (2003). DOI: 10.1055/s-2003-44551
- R. Davydov, A. Zaitceva, V. Davydov, D. Isakova, M. Mazing. J. Personalized Medicine, 13 (3), 443 (2023). DOI: 10.3390/jpm13030443
- P. Miller, J. Wang. Optics and Lasers in Engineering, 151 (3), 106919 (2022). DOI: 10.1016/j.optlaseng.2021.106919
- X.-W. He, J. Park, W.-S. Huang, G. Zhu, S. Wu. BMC Cardiovascular Disorders, 22 (4), 9 (2022). DOI: 10.1186/s12872-022-02456-5
- Sh. Tan, J. Wei, H. Chen, T. Zhang, X. Wu1, Yo. Deng, H. Zuo. Research on Biomedical Engineering, 38 (4), 1103 (2022). DOI: 10.1007/s42600-022-00244-w
- E. Andreozzi, R. Sabbadini, J. Centracchio, P. Bifulco, A. Irace, G. Breglio, M. Riccio. Sensors, 22 (19), 7566 (2022). DOI: 10.3390/s22197566
- S. Zaunseder, A. Vehkaoja, V. Fleischhauer, Ch.H. Antink. Biomedical Signal Processing and Control, 74 (3), 103538 (2022). DOI: 10.1016/j.bspc.2022.103538
- M.S. Mazing, A.Y. Zaitceva, Y.Y. Kislyakov, S.A. Avdyushenko. Intern. J. Pharmaceutical Research, 12, 1974 (2020). DOI: 10.31838/iipr/2020.SP2.355
- Y.A. Gataulin, D.K. Zaitsev, E.M. Smirnov, A.D. Yukhnev. Russ. J. Biomechanics, 23 (1), 58 (2019). DOI: 10.15593/RJBiomech/2019.1.07
- R.V. Davydov, V.V. Yushkova, V.V. Davydov, A.P. Glinushkin, A.V. Stirmanov, V.Yu. Rud. J. Phys.: Conf. Series, 1410 (1), 012067 (2019). DOI: 10.1088/1742-6596/1410/1/012067
- B. Wu, M. Li, Yi. Lu, Yo. Tang, Z. Wei. Lecture Notes in Electrical Engineering, 885 LNEE, 2137 (2022). DOI: 10.1007/978-981-19-1309-9_198
- A.Y. Zaitseva, L.P. Kislyakova, Y.Y. Kislyakov, S.A. Avduchenko. J. Phys.: Conf. Series, 1400 (3), 033022 (2019). DOI: 10.1088/1742-6596/1400/3/033022
- A.S. Grevtseva, K.J. Smirnov, K.V. Greshnevikov, V.Yu. Rud, A.P. Glinushkin. J. Phys.: Conf. Series, 1368 (2), 022072 (2019). DOI: 10.1088/1742-6596/1368/2/022072
- A.S. Grevtseva, K.J. Smirnov, V.Yu. Rud. J. Phys.: Conf. Series, 1135 (1), 012056 (2018). DOI: 10.1088/1742-6596/1135/1/012056
- Q. He, Zh. Sun, Yu. Li, W. Wang, R.K. Wang. Biomed. Optics Express, 12 (5), 2919 (2021). DOI: 10.1364/boe.423160
- M.M. Guzenko, M.S. Mazing, A.Y. Zaitseva. Biophysics (Russian Federation), 68 (2), 306 (2023). DOI: 10.1134/S0006350923020069
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.