Flexible memristors created by 2D printing based on graphene materials
Ivanov A.I.1, R.A. Soots 1, Pulik A.D.1, I.V. Antonova 1,2
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: art.iv.il@mail.ru

PDF
Memristor structures with crossbar architecture were printed on a 2D inkjet printer. To make contacts, a suspension based on graphene particles was used. The memristor active layer was formed based on V2O5 nanoparticles encapsulated by fluorinated graphene. Stable resistive switchings were obtained with a ratio of currents in the open and closed states ON/OFF of two orders of magnitude and a switching voltage of 1.0-1.5 V. Currents in the open state increased with increasing area of the structures, which corresponds to conduction through localized states. Tensile strains that occur during bending of more than 2% lead to a decrease in the open state current; these changes are reversible. Varying the structures parameters, and, above all, reducing the active layer thickness makes it possible to switch to a multi-level switching mode. The promise of using such memristors to create non-volatile and multi-level memory with low energy consumption is shown. Keywords: memristor, crossbar structure, graphene contacts, fluorinated graphene, flexibility, multilevel switchings.
  1. J. Zhu, T. Zhang, Y. Yang, R. Huang. Appl. Phys. Rev., 7, 011312 (2020)
  2. P. Tufan, K.S. Pranab, M. Soumen, K.K. Chattopadhyay. ACS Appl. Electron. Mater., 2 (11), 3667 (2020)
  3. D. Ielmini, Z. Wang, Y. Liu. APL Mater., 9, 050702 (2021)
  4. Y. Chen. ReRAM: History, Status, and Future. IEEE Trans. Electron. Devices, 67, 1420 (2020)
  5. B. Li, J.R. Doppa, P.P. Pande, K. Chakrabarty, J.X. Qiu, H. Li, ACM J. Emerg. Technol. Comput. Syst. (JETC), 16, 1 (2020)
  6. C. Bengel, F. Cuppers, M. Payvand, R. Dittmann, R. Waser, S. Hoffmann-Eifert, S. Menzel. Front. Neurosci., 15, 661856 (2021)
  7. A.I. Ivanov, A.K. Gutakovskii, I.A. Kotin, R.A. Soots, I.V. Antonova. Adv. Electron. Mater., 5 (10), 1900310 (2019)
  8. W.K. Kim, C. Wu, T.W. Kim. Appl. Surf. Sci., 444, 65 (2018)
  9. R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J.C. Lee, D. Akinwande. Nano Lett., 18, 434 (2018)
  10. A.I. Ivanov, V.Ya. Prinz, I.V. Antonova, A.K. Gutakovskii. Phys. Chem. Chem. Phys., 23, 20434 (2021)
  11. I.V. Antonova, I.I. Kurkina, A.K. Gutakovskii, I.A. Kotin, A.I. Ivanov, N.A. Nebogatikova, R.A. Soots, S.A. Smagulova. Mater. Des., 164, 107526 (2019)
  12. O. Berezina, D. Kirienko, A. Pergament, G. Stefanovich, A. Velichko, V. Zlomanov. Thin Solid Films, 574, 15 (2015)
  13. J.C. Perez-Marti nez, M. Berruet, C. Gonzales, S. Salehpour, A. Bahari, B. Arredondo, A. Guerrero. Adv. Funct. Mater., 33, 2305211 (2023)
  14. V. Aglieri, A. Zaffora, G. Lullo, M. Santamaria, F.Di Franco, U.Lo Cicero, M. Mosca, R. Macaluso. Superlat. Microstruct., 113, 135 (2018)
  15. J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, G. Zhang. Appl. Phys. Lett., 101 (6), 063112 (2012)
  16. J.-L. Meng, T.Y. Wang, Z. Yu He, L. Chen, H. Zhu, L. Ji, Q.Q. Sun, S.-J. Ding, W.-Z. Bao, P. Zhou, D.W. Zhang. Mater. Horizons, 8, 538 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru