Development of a method for molecular beam mass spectrometry of supersonic jets ionized by a high-voltage electron beam
Khudozhitkov V. E. 1, Kalyada V. V. 1, A E Zarvin 1
1Novosibirsk State University, Novosibirsk, Russia
Email: v.khudozhitkov@g.nsu.ru, daf2@mail.ru, zarvin@phys.nsu.ru

PDF
A technique for studying the mass spectra of rarefied gases clustered flows using an original combination of two diagnostic tools for supersonic jets: a high-voltage electron beam in a supersonic clustered stream for the ionization of jet particles and molecular beam mass spectrometry of the separated ion stream is proposed. Variants of the measuring system, which provided the possibility of ionization of particles of the flow by electrons of a given energy at an arbitrarily selected section of the supersonic jet are proposed, as well as a unique opportunity to analyze the collision process and energy exchange between ionized and neutral particles under conditions of wide variation in the density of neutral gas (collision frequency) are proposed. The possibilities of the diagnostic system for different gas dynamics of flows are shown. Recommendations on the choice of the nozzle-skimmer distance for various geometric and gas dynamic parameters of the outflow and the optimal gap between the electron beam and the skimmer are presented. The possibilities and advantages of the implemented methodology are demonstrated. The result of empirical optimization of the potentials of the ion transport system is presented. An illustration of the capabilities of the developed method is given.. Keywords: molecular beam mass spectrometry, high-voltage electron beam, supersonic jets, clusters.
  1. A. Kantromtz, I. Grey. Rev. Sci. Instrum., 22, 328 (1951). DOI: 10.1063/1.1745921
  2. N. Ramzey. Molekulyarnye puchki (IL, M., 1960)
  3. U. Bossel. AIAA J., 9, 2060 (1971)
  4. A.E. Zarvin, R.G. Sharafutdinov. PMTF, 6, 107 (1979) (in Russian)
  5. J. Braun, P.K. Day, J.P. Toennies, G. Witte, E. Neher. Rev. Scientific Instrum., 68, 3001 (1997). DOI: 10.1063/1.1148233
  6. D.C. Jordan, R. Barling, R.B. Doak. Rev. Scientific Instrum., 70 (3), 1640 (1999). DOI: 10.1063/1.1149645
  7. Y. Segev, N. Bibelnik, N. Akerman, Y. Shagam, A. Luski, M. Karpov, J. Narevicius, E. Narevicius. Sci. Adv., 3 (3), e1602258 (2017). DOI: 10.1126/sciadv.1602258
  8. O.F. Hagena, W. Obert. J. Chem. Phys., 56, 1793 (1972). DOI: 10.1063/1.1677455
  9. I.P. Suzdalev. Nanotekhnologiya: fiziko-khimiya nanoklusterov, nanostruktur i nanomaterialov (KomKniga, M., 2006)
  10. N.N. Aruev. Intern. J. Mass Spectrometry, 305 (1), 1 (2013). DOI: 10.1016/j.ijms.2013.06.025
  11. A.T. Lebedev. Mass-spektrometriya v organicheskoy khimii (BINOM, Laboratoriya znaniy, M., 2003)
  12. E. de Hoffmann, V. Stroobant. Mass Spectrometry: Principles and Applications (John Wiley \& Sons, Ltd., Toronto, 2003)
  13. A.E. Zarvin, V.V. Kalyada, V.E. Khudozhitkov. Teplofizika i aeromekhanika, 24 (5), 691 (2017) (in Russian)
  14. J.C. Traeger. In: Encyclopedia of Spectroscopy and Spectrometry (Third Edition) (Oxford, Academic Press, 2017), p. 650
  15. A. Ramos, J.M. Fernandez, G. Tejeda, S. Montero. Phys. Rev. A, 72, 053204 (2005). DOI: 10.1103/PhysRevA.72.053204
  16. A.V. Lazarev, T.A. Semenov, E.D. Belega, V.M. Gordienko. J. Supercritical Fluids, 187, 105631 (2022). DOI: 10.1016/j.supflu.2022.105631
  17. M.D. Khodakov, A.E. Zarvin, N.G. Korobeishchikov, V.V. Kalyada. In: 21-th International Symposium on Plasma Chemistry (ISPC 21), (Cairns, Australia, 2013), p. 141
  18. H. Haberland. Clusters of Atoms and Molecules. Theory, Experiment, and Clusters of Atoms, In: Springer Series in Chemical Physics ed. by Vitalii I. Goldanskii, Fritz P. Schafer, J. Peter Toennies (Springer Berlin (Verlag), Berlin-Heidelberg-NY.-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1994)
  19. B.M. Smirnov. UFN, 164 (7), 665 (1994) (in Russian)
  20. M. Patel, J. Thomas, H.C. Joshi. Vacuum, 211, 111909 (2023). DOI: 10.1016/j.vacuum.2023.111909
  21. E.P. Muntz. Phys. Fluids, 5, 80 (1962). DOI: 10.1063/1.1706495
  22. A.A. Bochkarev, V.A. Kosinov, V.G. Prikhodko, A.K. Rebrov. PMTF, 5, 158 (1970) (in Russian)
  23. A.K. Rebrov, S.F. Chekmarev, R.G. Sharafutdinov. PMTF, 1, 136 (1971) (in Russian)
  24. J.A. Smith, J.F. Driscoll. J. Fluid Mech., 72 (4), 695 (1975)
  25. L.A. Gochberg. Pro. Aerospace Sci., 33, 431 (1997)
  26. M. Belan, S. De Ponte, D. Tordella. Exp. Fluids, 45, 501 (2008). DOI: 10.1007/s00348-008-0493-5
  27. A.E. Zarvin, V.V. Kalyada, A.S. Yaskin, M.D. Khodakov, N.G. Korobeyschikov, V.E. Khudozhitkov, V.Zh. Madirbaev, B.S. Ezdin. PTE, 6, 50 (2016) (in Russian)
  28. A.E. Zarvin, V.V. Kalyada, V.Z. Madirbaev, N.G. Korobeishchikov, M.D. Khodakov, A.S. Yaskin, V.E. Khudozhitkov, S.F. Gimelshein. IEEE Trans. Pl. Sci., 45, 819 (2017). DOI: 10.1109/TPS.2017.2682901
  29. A.E. Zarvin, R.G. Sharafutdinov. PMTF, 6, 9 (1981) (in Russian)
  30. A.E. Zarvin, V.E. Khudozhitkov, K.A. Dubrovin, V.V. Kalyada, A.S. Yaskin. J. Phys.: Conf. Ser., 1683, 032008 (2020). DOI: 10.1088/1742-6596/1683/3/032008
  31. A.E. Zarvin, V.Zh. Madirbaev, K.A. Dubrovin, V.V. Kalyada. Plasma Chem. Plasma Process, 42, 247 (2022). DOI: 10.1007/s11090-021-10214-2
  32. K.A. Dubrovin, A.E. Zarvin, V.V. Kalyada, A.S. Yaskin, E.D. Dering. Vacuum, 218, 112652 (2023). DOI: 10.1016/j.vacuum.2023.112652
  33. N.I. Kislyakov, A.K. Rebrov, R.G. Sharafutdinov. PMTF, 1, 121 (1973) (in Russian)
  34. A.E. Zarvin, R.G. Sharafutdinov. PMTF, 4, 11 (1976) (in Russian)
  35. K.A. Dubrovin, A.E. Zarvin, A.K. Rebrov. PMTF, 5, 70 (2023) (in Russian). DOI: 10.15372/PMTF202315325
  36. Yu.I. Belchenko, V.I. Davydenko, P.P. Deychuli, I.S. Emelev, A.A. Ivanov, V.V. Kolmogorov, S.G. Konstantinov, A.A. Krasnov, S.S. Popov, A.L. Sanin, A.V. Sorokin, N.V. Stupishin, I.V. Shikhovtsev, A.V. Kolmogorov, M.G. Altlukhanov, G.F. Abdrashitova, A.N. Dranichnikov, V.A. Kapitonov, A.A. Kondakov. UFN, 188 (6), 595 (2018) (in Russian)
  37. V.V. Smalyuk. Diagnostika puchkov zaryazhennykh chastits v uskoritelyakh (Parallel, Novosibirsk, 2009)
  38. A. De Martino, M. Benslimane, M. Chatelet, C. Crozes, F. Pradere, H. Vach. Z. Phys. D, 27, 185 (1993)
  39. S. Schutte, U. Buck. Intern. J. Mass Spectrometry, 220, 183 (2002)
  40. E.T. Verkhovtsev, E.A. Bondarenko, Yu.S. Doronin. Fizika nizkikh temperatur, 30 (1), 47 (2004) (in Russian)
  41. D. Bonhommeau, N. Halberstadta, A. Viel. J. Chem. Phys., 124, 184314 (2006). DOI: 10.1063/1.2194552
  42. M.A. Khodorkovskii, T.O. Artamonova, S.V. Murashov, D. Michael, L.P. Rakcheeva, A.A. Belyaeva, N.A. Timofeev, A.S. Mel'nikov, A.L. Shakhmin, I.A. Dement'ev. Tech. Phys., 54 (1), 1 (2009). DOI: 10.1134/S1063784209010010
  43. D. Papanastasiou, D. Kounadis, I. Orfanopoulos, A. Lekkas, A. Zacharos, E. Raptakis, M.I. Gini, K. Eleftheriadis, I.N. Nikolos. Intern. J. Mass Spectrometry, 405, 116605 (2021). DOI: 10.1016/j.ijms.2021.116605
  44. Z. Chen, D. Liu, J. Han, L. Bai. Scientific Reports, 6, 32391. DOI: 10.1038/srep32391
  45. M. Patel, B.R. Geethika, J. Thomas, H. Joshi. Scientific Reports, 13, 6338 (2023). DOI: 10.1038/s41598-023-32373-2
  46. O.F. Hagena. Rev. Sci. Instr., 63, 2374 (1992). DOI: 10.1063/1.1142933
  47. H.M. Parker, A.R. Kuhlthau, R.N. Zapata, J.E. Scott. In: Rarefied Gas Dynamics (Pergamon Press, Inc., NY., 1960)
  48. A.E. Zarvin, R.G. Sharafutdinov. Fluid Dynamics, 20, 744 (1980)
  49. M. Patel, B.R. Geethika, J. Thomas, H. Joshi. Scientific Reports, 13, 6338 (2023). DOI: 10.1038/s41598-023-32373-2
  50. Y.H. Wu, Y.J. Chen. In: Proceedings of the 9th International Particle Accelerator Conference (JACoW Publishing, Vancouver, BC, Canada, 2018), p. 2271, DOI: 10.18429/JACoW-IPAC2018-WEPAL044
  51. NIST Chemistry WebBook 2018 NIST Standard Reference Database Number 69 (by the U.S. Secretary of Commerce)
  52. A.E. Zarvin, V.V. Kalyada, A.S. Yaskin, K.A. Dubrovin, V.E. Khudozhitkov, S.T. Chinenov. IOP Conf. Series: J. Phys.: Conf. Series., 1128, 012096 (2018). DOI: 10.1088/1742-6596/1128/1/012096
  53. A.E. Zarvin, V.Z. Madirbaev, K.A. Dubrovin, V.V. Kalyada. Plasma Chem. Plasma Process, 42, 247 (2021). DOI: 10.1007/s11090-021-10214-2
  54. K. Dubrovin, A. Zarvin, Yu.E. Gorbachev, A. Yaskin, V.V. Kalyada. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 23 (4), 1 (2022) (in Russian). DOI: 10.33257/PhChGD.23.4.1007
  55. P.J.M. van der Burgt, J.W. McConkey. J. Chem. Phys., 102, 8414 (1995). DOI: 10.1063/1.468832
  56. U. Landman, R.N. Barnett, C.L. Cleveland, D. Scharf, J. Jortner. J. Phys. Chem., 91 (19), 4890 (1987)
  57. E.M. Abornev, V.L. Zhukovskaya, O.A. Nerushev, S.A. Novopashin, A.L. Perepelkin, V.V. Radchenko. Pis'ma v ZhTF, 23 (4), 1 (2022) (in Russian)
  58. H. Kubotera, S. Sakai, T. Sekitsuka, T. Tachibana, T. Hirayama. Appl. Surf. Sci., 256, 1046 (2009).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru