Progress of RFTES detector technology
Shitov S. V. 1,2, Kim T. M.1, Solomatov L. S.1, Rudenko N. Yu.1, Merenkov A. V.1, Ermakov An. B.2, Chichkov V. I.1
1National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: Sergey3e@gmail.com

PDF
The paper examines the current state of research and development of a new ultra-sensitive detection technology based on high-frequency heating of a superconducting microbridge by a combination of resonator currents at frequencies of about 1.5 GHz and a signal from a planar antenna in the frequency range 550-750 GHz at temperatures of 50-400 mK, called RFTES technology. The new technology aims to development of terahertz-range direct detectors of attowatt sensitivity and has already demonstrated performance close to theoretically possible under experimental conditions. A comparison with known superconducting detectors is made, competitive advantages and prospects for use in integrated circuits, including multi-element imaging arrays, are discussed, as well as the recently discovered strong kinetic effect in hafnium film at temperatures of about 100 mK. The prospects for the development of RFTES technology towards complex devices such as differential detectors and active integrated detectors with quantum sensitivity, as well as sources of thermodynamic noise for calibrating terahertz detectors with picowatt heat production are analyzed. Keywords: direct detector, superconducting transition, superconducting microbridge, superconducting resonator, planar lens-antenna, RFTES, hafnium film, hot electron gas, RF superconductivity, thermodynamic noise, SQUID based RF amplifier, quantum sensitivity.
  1. J. Clarke, P.L. Richards, N.H. Yeh. Appl. Phys. Lett., 30, 664 (1977). https://doi.org/10.1063/1.89278
  2. D.E. Prober. Appl. Phys. Lett., 62, 2119 (1993). https://doi.org/10.1063/1.109445
  3. J.S. Lee, J. Gildemeister, W. Holmes, A. Lee, P. Richards. Appl. Opt., 37 (16), 3391 (1998). https://doi.org/10.1364/AO.37.003391
  4. K.D. Irwin, G.C. Hilton. Topics Appl. Phys., 99, 63 (2005). https://doi.org/10.1007/10933596_3
  5. N. Bluzer. J. Appl. Phys., 78, 7340 (1995). https://doi.org/10.1063/1.360383
  6. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). https://doi.org/10.1038/nature02037
  7. B.S. Karasik, W.R. McGrath, H.G. LeDuc, M.E. Gershenson. Supercond. Sci. Tecnol., 12, 745 (1999). https://doi.org/10.1088/0953-2048/12/11/316
  8. A. Shurakov, Y. Lobanov, G. Goltsman. Supercond. Sci. Technol., 29 (2), 023001 (2016). https://doi.org/10.1088/0953-2048/29/2/023001
  9. S.V. Shitov. Tech. Phys. Lett., 37 (10), 932 (2011). https://doi.org/10.1134/S1063785011100117
  10. T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, A. Smith. Appl. Phys. Lett., 86, 112511 (2005). https://doi.org/10.1016/j.phpro.2012.02.476
  11. K.D. Irwin, K.W. Lehnert. Appl. Phys. Lett., 85, 2107 (2004). https://doi.org/10.1063/1.1791733
  12. Electronic media. Available at: https://www.premwave.com/microwave-components/frequency-meters.php
  13. B.S. Karasik. Private Communications (2011)
  14. A. Kuzmin, S.V. Shitov, A. Scheuring, J.M. Meckbach, K.S. Il'in, S. Wuensch, A.V. Ustinov, M. Siegel. IEEE Trans. Terahertz Sci. Techn., 3 (1), 25 (2013). https://doi.org/10.1109/TTHZ.2012.2236148
  15. A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022). (in Russian) https://doi.org/10.21883/FTT.2022.10.53081.50HH
  16. S.V. Shitov, N.N. Abramov, A.A. Kuzmin, M. Merker, M. Arndt, S. Wuensch, K.S. Ilin, E.V. Erhan, A.V. Ustinov, M. Siegel. IEEE Trans. Appl. Supercond, 25 (3), (2014). https://doi.org/10.1109/TASC.2014.2385090
  17. A.V. Merenkov, V.I. Chichkov, A.B. Ermakov, A.V. Ustinov, S.V. Shitov. IEEE Trans. Appl. Supercond., 27 (4), 1 (2017). https://doi.org/10.1109/TASC.2017.2655507
  18. A.V. Merenkov, V.I. Chichkov, A.B. Ermakov., A.V. Ustinov, S.V. Shitov. IEEE Trans. Appl. Supercond., 28 (7), 282798110 (2018). https://doi.org/10.1109/TASC.2018.2827981
  19. T.M. Kim, A.V. Merenkov, An.B. Ermakov, L.S. Solomatov, V.I. Chichkov, S.V. Shitov. ZhTF, 93 (7), 995 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.07.55759.117-23
  20. D.C. Mattis, J. Bardeen. Phys. Rev., 111, 412 (1958). https://doi.org/10.1103/PhysRev.111.412
  21. N.N. Abarmov. Tech. Phys., 61 (2), 2, 202 (2016). https://doi.org/10.1134/S106378421602002X
  22. A.F. Andreev. ZhETF, 46 (5), 1823 (1964). (in Russian)
  23. E.M. Gershenzon, M.E. Gershenzon, G.N. Gol'tsman, A.M. Lyul'kin, A.D. Semenov, A.V. Sergeev. Sov. Phys., 97 (3), 901 (1990).
  24. A. Sergeev, M. Reizer. Int. J. Mod. Phys. B, 10, 635 (1996). https://doi.org/10.1142/S021797929600026X
  25. M.E. Gershenson, D. Gong, T. Sato, B.S. Karasik, A.V. Sergeev. Appl. Phys. Lett., 79, 2049 (2001). https://doi.org/10.1063/1.1407302
  26. A.V. Sergeev, V.V. Mitin, B.S. Karasik, Appl. Phys. Lett., 80, 817 (2002). https://doi.org/10.1063/1.1445462
  27. L.S. Solomatov, A.V. Merenkov, S.V. Shitov. Teoreticheskoe issledovanie avtokolebaniy v RFTES-detektore. Nanofizika i nanoelektronika. Tr. XXVIIII Mezhdunar. simp. (IFP RAN, Nizhny Novgorod, 11-15 marta 2024 g.), t. 1, 560 s. ISBN 978-5-8048-0123-7
  28. M.D. Audley, W.S. Holland, W.D. Duncan, D. Atkinson, M. Cliffe, M. Ellis, X. Gao, D.C. Gostick, T. Hodson, D. Kelly, M.J. MacIntosh, H. McGregor., T. Peacocke, I. Robson, I. Smith, K.D. Irwin, G.C. Hilton, J.N. Ullom, A. Walton, C. Dunare, W. Parkes, P.A.R. Ade, D. Bintley, F. Gannaway, M. Griffin, G. Pisano, R.V. Sudiwala, I. Walker, A. Woodcraft, M. Fich, M. Halpern, G. Mitchell, D. Naylor, P. Bastien. Nucl. Instrum. Methods Phys. Res. A, 520, 479 (2004). https://doi.org/10.1016/j.nima.2003.11.378
  29. G.B. Rebeiz. Proceed. IEEE, 80, 11 (1992). https://doi.org/10.1109/5.175253
  30. Electronic source. Available at: https://www.tydexoptics.com/
  31. M. Kominami, D.M. Pozar, D.H. Schaubert. IEEE Trans. Ant. Propag., AP-33, 600 (1985). https://doi.org/10.1109/TAP.1985.1143638
  32. A.V. Uvarov, S.V. Shitov, A.N. Vystavkin. Uspekhi sovremennoy radioelectroniki, 8, 43 (2010)
  33. S.V. Shitov (Patent RF na izobretenie N2801920 ot 28 dekabria 2022)
  34. S.V. Shitov. ZhTF, 93 (7), 988 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.07.55758.116-23
  35. N.Yu. Rudenko, S.V. Shitov. Razrabotka aktivnogo teragertsovogo RFTES-detektora. Nanofizika i nanoelektronika. Tr. XXVIIII Mezhdunar. simp. (IFP RAN, Nizhny Novgorod, 11
  36. -15 marta 2024 g.), t. 1, 560 s. ISBN 978-5-8048-0123-7
  37. G.V. Prokopenko, S.V. Shitov, D.V. Balashov, P.N. Dmitriev, V.P. Koshelets, J. Mygind. IEEE Trans. Appl. Supercond., 11 (1), 1239 (2001). https://doi.org/10.1109/TASC.2003.814146
  38. T.M. Kim, S.V. Shitov. Pis'ma v ZhTF, 47 (24), 13 (2021). (in Russian) https://doi.org/10.21883/PJTF.2021.24.51791.18897
  39. T.M. Kim, V.I. Chichkov, S.V. Shitov. Issledovanie termodinamicheskogo izluchatelya s SVCh razogrevom dlya kalibrovki RFTES-detektora. Nanofizika i nanoelektronika. Tr. XXVIIII Mezhdunar. simp. (IFP RAN, Nizhny Novgorod, 11-15 marta 2024 g.), t. 1, 560 s. ISBN 978-5-8048-0123-7

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru