Shitov S. V.
1,2, Kim T. M.
1, Solomatov L. S.
1, Rudenko N. Yu.
1, Merenkov A. V.
1, Ermakov An. B.
2, Chichkov V. I.
11National University of Science and Technology MISiS, Moscow, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: Sergey3e@gmail.com
The paper examines the current state of research and development of a new ultra-sensitive detection technology based on high-frequency heating of a superconducting microbridge by a combination of resonator currents at frequencies of about 1.5 GHz and a signal from a planar antenna in the frequency range 550-750 GHz at temperatures of 50-400 mK, called RFTES technology. The new technology aims to development of terahertz-range direct detectors of attowatt sensitivity and has already demonstrated performance close to theoretically possible under experimental conditions. A comparison with known superconducting detectors is made, competitive advantages and prospects for use in integrated circuits, including multi-element imaging arrays, are discussed, as well as the recently discovered strong kinetic effect in hafnium film at temperatures of about 100 mK. The prospects for the development of RFTES technology towards complex devices such as differential detectors and active integrated detectors with quantum sensitivity, as well as sources of thermodynamic noise for calibrating terahertz detectors with picowatt heat production are analyzed. Keywords: direct detector, superconducting transition, superconducting microbridge, superconducting resonator, planar lens-antenna, RFTES, hafnium film, hot electron gas, RF superconductivity, thermodynamic noise, SQUID based RF amplifier, quantum sensitivity.
- J. Clarke, P.L. Richards, N.H. Yeh. Appl. Phys. Lett., 30, 664 (1977). https://doi.org/10.1063/1.89278
- D.E. Prober. Appl. Phys. Lett., 62, 2119 (1993). https://doi.org/10.1063/1.109445
- J.S. Lee, J. Gildemeister, W. Holmes, A. Lee, P. Richards. Appl. Opt., 37 (16), 3391 (1998). https://doi.org/10.1364/AO.37.003391
- K.D. Irwin, G.C. Hilton. Topics Appl. Phys., 99, 63 (2005). https://doi.org/10.1007/10933596_3
- N. Bluzer. J. Appl. Phys., 78, 7340 (1995). https://doi.org/10.1063/1.360383
- P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas. Nature, 425, 817 (2003). https://doi.org/10.1038/nature02037
- B.S. Karasik, W.R. McGrath, H.G. LeDuc, M.E. Gershenson. Supercond. Sci. Tecnol., 12, 745 (1999). https://doi.org/10.1088/0953-2048/12/11/316
- A. Shurakov, Y. Lobanov, G. Goltsman. Supercond. Sci. Technol., 29 (2), 023001 (2016). https://doi.org/10.1088/0953-2048/29/2/023001
- S.V. Shitov. Tech. Phys. Lett., 37 (10), 932 (2011). https://doi.org/10.1134/S1063785011100117
- T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, A. Smith. Appl. Phys. Lett., 86, 112511 (2005). https://doi.org/10.1016/j.phpro.2012.02.476
- K.D. Irwin, K.W. Lehnert. Appl. Phys. Lett., 85, 2107 (2004). https://doi.org/10.1063/1.1791733
- Electronic media. Available at: https://www.premwave.com/microwave-components/frequency-meters.php
- B.S. Karasik. Private Communications (2011)
- A. Kuzmin, S.V. Shitov, A. Scheuring, J.M. Meckbach, K.S. Il'in, S. Wuensch, A.V. Ustinov, M. Siegel. IEEE Trans. Terahertz Sci. Techn., 3 (1), 25 (2013). https://doi.org/10.1109/TTHZ.2012.2236148
- A.V. Merenkov, T.M. Kim, V.I. Chichkov, S.V. Kalinkin, S.V. Shitov. FTT, 64 (10), 1404 (2022). (in Russian) https://doi.org/10.21883/FTT.2022.10.53081.50HH
- S.V. Shitov, N.N. Abramov, A.A. Kuzmin, M. Merker, M. Arndt, S. Wuensch, K.S. Ilin, E.V. Erhan, A.V. Ustinov, M. Siegel. IEEE Trans. Appl. Supercond, 25 (3), (2014). https://doi.org/10.1109/TASC.2014.2385090
- A.V. Merenkov, V.I. Chichkov, A.B. Ermakov, A.V. Ustinov, S.V. Shitov. IEEE Trans. Appl. Supercond., 27 (4), 1 (2017). https://doi.org/10.1109/TASC.2017.2655507
- A.V. Merenkov, V.I. Chichkov, A.B. Ermakov., A.V. Ustinov, S.V. Shitov. IEEE Trans. Appl. Supercond., 28 (7), 282798110 (2018). https://doi.org/10.1109/TASC.2018.2827981
- T.M. Kim, A.V. Merenkov, An.B. Ermakov, L.S. Solomatov, V.I. Chichkov, S.V. Shitov. ZhTF, 93 (7), 995 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.07.55759.117-23
- D.C. Mattis, J. Bardeen. Phys. Rev., 111, 412 (1958). https://doi.org/10.1103/PhysRev.111.412
- N.N. Abarmov. Tech. Phys., 61 (2), 2, 202 (2016). https://doi.org/10.1134/S106378421602002X
- A.F. Andreev. ZhETF, 46 (5), 1823 (1964). (in Russian)
- E.M. Gershenzon, M.E. Gershenzon, G.N. Gol'tsman, A.M. Lyul'kin, A.D. Semenov, A.V. Sergeev. Sov. Phys., 97 (3), 901 (1990).
- A. Sergeev, M. Reizer. Int. J. Mod. Phys. B, 10, 635 (1996). https://doi.org/10.1142/S021797929600026X
- M.E. Gershenson, D. Gong, T. Sato, B.S. Karasik, A.V. Sergeev. Appl. Phys. Lett., 79, 2049 (2001). https://doi.org/10.1063/1.1407302
- A.V. Sergeev, V.V. Mitin, B.S. Karasik, Appl. Phys. Lett., 80, 817 (2002). https://doi.org/10.1063/1.1445462
- L.S. Solomatov, A.V. Merenkov, S.V. Shitov. Teoreticheskoe issledovanie avtokolebaniy v RFTES-detektore. Nanofizika i nanoelektronika. Tr. XXVIIII Mezhdunar. simp. (IFP RAN, Nizhny Novgorod, 11-15 marta 2024 g.), t. 1, 560 s. ISBN 978-5-8048-0123-7
- M.D. Audley, W.S. Holland, W.D. Duncan, D. Atkinson, M. Cliffe, M. Ellis, X. Gao, D.C. Gostick, T. Hodson, D. Kelly, M.J. MacIntosh, H. McGregor., T. Peacocke, I. Robson, I. Smith, K.D. Irwin, G.C. Hilton, J.N. Ullom, A. Walton, C. Dunare, W. Parkes, P.A.R. Ade, D. Bintley, F. Gannaway, M. Griffin, G. Pisano, R.V. Sudiwala, I. Walker, A. Woodcraft, M. Fich, M. Halpern, G. Mitchell, D. Naylor, P. Bastien. Nucl. Instrum. Methods Phys. Res. A, 520, 479 (2004). https://doi.org/10.1016/j.nima.2003.11.378
- G.B. Rebeiz. Proceed. IEEE, 80, 11 (1992). https://doi.org/10.1109/5.175253
- Electronic source. Available at: https://www.tydexoptics.com/
- M. Kominami, D.M. Pozar, D.H. Schaubert. IEEE Trans. Ant. Propag., AP-33, 600 (1985). https://doi.org/10.1109/TAP.1985.1143638
- A.V. Uvarov, S.V. Shitov, A.N. Vystavkin. Uspekhi sovremennoy radioelectroniki, 8, 43 (2010)
- S.V. Shitov (Patent RF na izobretenie N2801920 ot 28 dekabria 2022)
- S.V. Shitov. ZhTF, 93 (7), 988 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.07.55758.116-23
- N.Yu. Rudenko, S.V. Shitov. Razrabotka aktivnogo teragertsovogo RFTES-detektora. Nanofizika i nanoelektronika. Tr. XXVIIII Mezhdunar. simp. (IFP RAN, Nizhny Novgorod, 11
- -15 marta 2024 g.), t. 1, 560 s. ISBN 978-5-8048-0123-7
- G.V. Prokopenko, S.V. Shitov, D.V. Balashov, P.N. Dmitriev, V.P. Koshelets, J. Mygind. IEEE Trans. Appl. Supercond., 11 (1), 1239 (2001). https://doi.org/10.1109/TASC.2003.814146
- T.M. Kim, S.V. Shitov. Pis'ma v ZhTF, 47 (24), 13 (2021). (in Russian) https://doi.org/10.21883/PJTF.2021.24.51791.18897
- T.M. Kim, V.I. Chichkov, S.V. Shitov. Issledovanie termodinamicheskogo izluchatelya s SVCh razogrevom dlya kalibrovki RFTES-detektora. Nanofizika i nanoelektronika. Tr. XXVIIII Mezhdunar. simp. (IFP RAN, Nizhny Novgorod, 11-15 marta 2024 g.), t. 1, 560 s. ISBN 978-5-8048-0123-7
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.