Spectral measurements of a niobium Josephson junction array by a superconducting receiver with a mixer based on high-temperature bicrystalline junction
Galin M. A.
1, Revin L. S.
1,2, Samartsev A. V.
1,2, Levichev M. Yu.
1, El’kina A. I.
1, Masterov D. V.
1, Parafin A. E.
11Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Alekseev State Technical University, Nizhny Novgorod, Russia
Email: galin@ipmras.ru, rls@ipmras.ru, a.samartseev@yandex.ru, levichev@ipmras.ru, aie@ipmras.ru, masterov@ipmras.ru, parafin@ipmras.ru
Spectral measurements of a niobium Josephson junctions array were performed to estimate the Josephson radiation linewidth. The array consists of 9996 Nb/NbSi/Nb junctions connected in series, occupying an area of 5x7 mm2 on a silicon substrate. To analyze the Josephson spectrum, a heterodyne superconducting receiver with a mixer based on a high-temperature superconducting Josephson junction was used. Significant decrease of the linewidth to 0.3-0.8 MHz was detected, when the array is connected to an autonomous power source. Keywords: Josephson junctions, HTSC, heterodyne receiver, spectrum, synchronization, terahertz emission
- Fundamentals and Frontiers of the Josephson Effect, ed. by F. Tafuri (Springer Nature, Switzerland, AG, 2019); a --- J. Gallop, L. Hao. Ch. 14: Physics and Applications of NanoSQUIDs, p. 555-585; b --- S.P. Benz. Ch. 15: Josephson Junctions for Metrology Applications, p. 587-609; c --- A.F. Kockum, F. Nori. Ch. 17: Quantum Bit with Josephson Junctions, p. 703-741; d --- D. Golubev, T. Bauch, F. Lombardi. Ch. 13: Josephson Effect in Graphene and 3D Topological Insulators, p. 529-553
- M. Tonouchi. Nature Photon., 1, 97 (2007). DOI: 10.1038/nphoton.2007.3
- M. Darula, T. Doderer, S. Beuven. Supercond. Sci. Technol., 12 (1), R1 (1999). DOI: 10.1088/0953-2048/12/1/001
- A.K. Jain, K.K. Likharev, J.E. Lukens, J.E. Sauvageau. Phys. Rep., 109 (6), 309 (1984). DOI: 10.1016/0370-1573(84)90002-4
- M. Ji, J. Yuan, B. Gross, F. Rudau, D.Y. An, M.Y. Li, X.J. Zhou, Y. Huang, H.C. Sun, Q. Zhu, J. Li, N.V. Kinev, T. Hatano, V.P. Koshelets, D. Koelle, R. Kleiner, W.W. Xu, B.B. Jin, H.B. Wang, P.H. Wu. Appl. Phys. Lett., 105 (12), 122602 (2014). DOI: 10.1063/1.4896684
- T.M. Benseman, A.E. Koshelev, V. Vlasko-Vlasov, Y. Hao, U. Welp, W.-K. Kwok, B. Gross, M. Lange, D. Koelle, R. Kleiner, H. Minami, M. Tsujimoto, K. Kadowaki. Phys. Rev. B, 100 (14), 144503 (2019). DOI: 10.1103/PhysRevB.100.144503
- T. Kashiwagi, T. Yuasa, G. Kuwano, T. Yamamoto, M. Tsujimoto, H. Minami, K. Kadowaki. Materials, 14 (5), 1135 (2021). DOI: 10.3390/ma14051135
- R. Kobayashi, K. Hayama, S. Fujita, M. Tsujimoto, I. Kakeya. Phys. Rev. Appl., 17 (5), 054043 (2022). DOI: 10.1103/PhysRevApplied.17.054043
- H. Sun, S. Chen, Y.-L. Wang, G. Sun, J. Chen, T. Hatano, V.P. Koshelets, D. Koelle, R. Kleiner, H. Wang, P. Wu. Appl. Sci., 13 (6), 3469 (2023). DOI: 10.3390/app13063469
- V.P. Koshelets, S.V. Shitov. Supercond. Sci. Technol., 13 (5), R53 (2000). DOI: 10.1088/0953-2048/13/5/201
- M. Li, J. Yuan, N.V. Kinev, J. Li, B. Gross, S. Guenon, A. Ishii, K. Hirata, T. Hatano, D. Koelle, R. Kleiner, V.P. Koshelets, H. Wang, P. Wu. Phys. Rev. B, 86 (6), 060505 (2012). DOI: 10.1103/PhysRevB.86.060505
- N.V. Kinev, K.I. Rudakov, L.V. Filippenko, A.M. Baryshev, V.P. Koshelets. IEEE Trans. Terahertz Sci. Technol., 9 (6), 557 (2019). DOI: 10.1134/S1063783420090140
- N.V. Kinev, K.I. Rudakov, L.V. Filippenko, V.P. Koshelets. IEEE Trans. Appl. Supercond., 32 (4), 1500206 (2022). DOI: 10.1109/TASC.2022.3143483
- F. Boussaha, M. Salez, A. Feret, B. Lecomte, C. Chaumont, M. Chaubet, F. Dauplay, Y. Delorme, J.-M. Krieg. J. Appl. Phys., 105 (7), 073902 (2009). DOI: 10.1063/1.3099602
- M.A. Galin, N.V. Kinev, M.Yu. Levichev, A.I. El'kina, A.V. Antonov, A.V. Khudchenko, G.P. Nazarov, V.V. Kurin, V.P. Koshelets. IEEE Trans. Appl. Supercond., 34 (3), 1100405 (2024). DOI: 10.1109/TASC.2024.3386416
- M. Malnou, C. Feuillet-Palma, C. Ulysse, G. Faini, P. Febvre, M. Sirena, L. Olanier, J. Lesueur, N. Bergeal. J. Appl. Phys., 116 (7), 074505 (2014). DOI: 10.1063/1.4892940
- F. Mueller, R. Behr, T. Weimann, L. Palafox, D. Olaya, P.D. Dresselhaus, S.P. Benz. IEEE Trans. Appl. Supercond., 19 (3), 981 (2009). DOI: 10.1109/TASC.2009.2019063
- O. Kieler, R. Wendisch, R.-W. Gerdau, T. Weimann, J. Kohlmann, R. Behr. IEEE Trans. Appl. Supercond., 31 (5), 1100705 (2021). DOI: 10.1109/TASC.2021.3060678
- E.I. Glushkov, A.V. Chiginev, L.S. Kuzmin, L.S. Revin. Beilstein J. Nanotechnol., 13, 325 (2022). DOI: 10.3762/bjnano.13.27
- M.A. Galin, A.M. Klushin, V.V. Kurin, S.V. Seliverstov, M.I. Finkel, G.N. Goltsman, F. Mueller, T. Scheller, A.D. Semenov. Supercond. Sci. Technol., 28 (5), 055002 (2015). DOI: 10.1088/0953-2048/28/5/055002
- M.A. Galin, I.A. Shereshevsky, N.K. Vdovicheva, V.V. Kurin. Supercond. Sci. Technol., 34 (7), 075005 (2021). DOI: 10.1088/1361-6668/abfd0b
- Electronic media. Available at: https://download.tek.com/datasheet/6220-6221.pdf
- F. Song, F. Muller, R. Behr, A.M. Klushin. Appl. Phys. Lett., 95 (17), 172501 (2009). DOI: 10.1063/1.3253417
- M.A. Galin, V.V. Kurin, I.A. Shereshevsky, N.K. Vdovicheva, A.V. Antonov, B.A. Andreev, A.M. Klushin. IEEE Trans. Appl. Supercond., 31 (5), 1500905 (2021). DOI: 10.1109/TASC.2021.3064533
- M.A. Galin, M.Yu. Levichev, A.I. El'kina, A.V. Antonov, O. Kieler. Proceedings of XXVII International Symposium "Nanophysics and Nanoelectronics" (Nizhny Novgorod, Russia, 2023), vol. 1, p. 25
- A. Libchaber. Physica B+C, 109-110, 1583 (1982). DOI: 10.1016/0378-4363(82)90181-4
- E. Matrozova, A. Parafin, D. Masterov, L. Revin, S. Pavlov. Proceedings of 2022 IEEE 8th All-Russian Microwave Conference ( RMC) (Russia, Moscow, November 23-25, 2022), p. 45. DOI: 10.1109/RMC55984.2022.10079648
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.