Effect of numerical aperture on the ultrashort laser pulses focusing in bulk of synthetic diamond
Gulina Y. S. 1, Chzhu Ts.1, Krasin G. K. 1, Kuzmin E.V. 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: gulinays@lebedev.ru, krasingk@lebedev.ru, kuzmine@lebedev.ru

PDF
The effect of the focusing optics numerical aperture (NA) on the plasma channels formation induced by 1030 nm ultrashort laser pulses in bulk of synthetic diamond is investigated. It is shown that in the studied peak power range P_0=0.45-0.9 MW at NA<0.2 the nonlinear focusing regime takes place, in which the significant influence of Kerr self-focusing leads to the extended plasma channels formation, and with tight focusing (NA>0.3) it happens in the linear regime, where due to the predominance of geometric focusing the formation of more compact structures is possible. The transition from a nonlinear to a linear focusing depends on the power of the laser pulses and at lower powers occurs at higher values of the numerical aperture. The results obtained can be used to improve the accuracy of in-bulk laser micro/nanomodification and to control the spatial parameters of the modified regions. Keywords: ultrashort laser pulses, nonlinear optical interaction, numerical aperture, filamentation, synthetic diamond, plasma channels, luminescence.
  1. S. Kudryashov, A. Nastulyavichus, G. Krasin, K. Khamidullin, K. Boldyrev, D. Kirilenko, A. Yachmenev, D. Ponomarev, G. Komandin, S. Lebedev, D. Prikhod'ko, M. Kovalev. Opt. Las. Technol., 158 (A), 108873 (2023). DOI: 10.1016/j.optlastec.2022.108873
  2. K. Sugioka, Y. Cheng. Light: Sci. Appl., 3 (4), 149 (2014). DOI: 10.1038/lsa.2014.30
  3. R.A. Khmelnitsky, O.E. Kovalchuk, Y.S. Gulina, A.A. Nastulyavichus, G.Y. Kriulina, N.Y. Boldyrev, S.I. Kudryashov, A.O. Levchenko, V.S. Shiryaev. Diamond and Related Materials, 128, 109278 (2022). DOI: 10.1016/j.diamond.2022.109278
  4. Yu.S. Gulina, R.A. Khmelnitsky, O.E. Kovalchuk. Opt. i spectr., 131 (2), 247 (2023). DOI: 10.21883/OS.2023.02.55015.1-23
  5. P.L. Kelley. Phys. Rev. Lett., 16 (9), 384 (1966). DOI: 10.1103/PhysRevLett.16.384
  6. J.H. Marburger. Progr. Quant. Electron., 4 (1), 35 (1975). DOI: 10.1016/0079-6727(75)90003-8
  7. F.F. Chen. Introduction to plasma physics and controlled fusion (Springer International Publishing, Switzerland, 2016). DOI: 10.1007/978-3-319-22309-4
  8. A. Couairon, A. Mysyrowicz. Phys. Rep., 441 (2-4), 47 (2007). DOI: 10.1016/j.physrep.2006.12.005
  9. S.I. Kudryashov, P.A. Danilov, E.V. Kuzmin, Y.S. Gulina, A.E. Rupasov, G.K. Krasin, I.G. Zubarev, A.O. Levchenko, M.S. Kovalev, P.P. Pakholchuk, S.A. Ostrikov, A.A. Ionin. Opt. Lett., 47 (14), 3487 (2022). DOI: 10.1364/ol.462693
  10. G.K. Krasin, Y.S. Gulina, E.V. Kuzmin, V.P. Martovitskii, S.I. Kudryashov. Photonics, 10 (2), 106 (2023). DOI: 10.3390/photonics10020106
  11. A.Q. Wu, I.H. Chowdhury, X. Xu. Appl. Phys. Lett., 88 (11), 11502 (2006). DOI: 10.1063/1.2183361
  12. E.N. Glezer, E. Mazur. Appl. Phys. Lett., 71 (7), 882 (1997). DOI: 10.1063/1.119677
  13. F. Theberge, W. Liu, P.T. Simard, A. Becker, S.L. Chin. Phys. Rev. E, 74 (3), 036406 (2006). DOI: 10.1103/PhysRevE.74.036406
  14. Y. Gulina, J. Zhu, G. Krasin, E. Kuzmin, S. Kudryashov. Photonics, 10 (10), 1177 (2023). DOI: 10.3390/photonics10101177
  15. K. Lim, M. Durand, M. Baudelet, M. Richardson. Sci. Rep., 4 (1), 7217 (2014). DOI: 10.1364/cleo_qels.2015.ftu4d.4
  16. N. Naseri, G. Dupras, L. Ramunno. Opt. Expr., 28 (18), 26977 (2020). DOI: 10.1364/OE.395185
  17. S.I. Kudryashov, P.A. Danilov, N.A. Smirnov, N.G. Stsepuro, A.E. Rupasov, R.A. Khmelnitskii, E.A. Oleynichuk, E.V. Kuzmin, A.O. Levchenko, Y.S. Gulina, S.N. Shelygina, I.V. Sozaev, M.S. Kovalev, O.E. Kovalchuk. Appl. Surf. Sci., 575, 151736 (2022). DOI: 10.1016/j.apsusc.2021.151736
  18. L. Khan. Laser Filamentation --- Beyond Self-focusing and Plasma Defocusing (University of Central Florida, Orlando, 2014). URL: http://purl.fcla.edu/fcla/etd/CFE0005520
  19. M. Kozak, T. Otobe, M. Zukerstein, F. Trojanek, P. Maly. Phys. Rev. B, 99, 104305 (2019). DOI: 10.1103/PhysRevB.99.104305
  20. L.V. Keldysh. Sov. Phys. JETP, 20, 1307 (1965)
  21. C.B. Schaffer, A. Brodeur, E. Mazur. Meas. Sci. Technol., 12, 1784 (2001). DOI: 10.1088/0957-0233/12/11/305
  22. R. Osellame, G. Cerullo, R. Ramponi. Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials (Springer Berlin, Heidelberg, 2012). DOI: 10.1007/978-3-642-23366-1
  23. S.S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin. Appl. Phys. A, 79, 1695 (2004). DOI: 10.1007/s00339-004-2684-0
  24. C. Ferris. Theoretical modeling of laser-induced absorption phenomena in optical materials (University of Nebraska, Lincoln, 2014). URL: http://digitalcommons.unl.edu/elecengtheses/52

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru