Analysis of raman spectra during excitation at wavelengths 532 and 785 nm for rapid skin tumors diagnosis
Saraeva I. N. 1, Rimskaya E. N.1, Gorevoy A. V. 1, Timurzieva A. B. 1,2, Shelygina S. N. 1, Perevedentseva E. V. 1, Kudryashov S. I 1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Federal State Budgetary Institution "National Research Institute of Public Health named after N.A. Semashko", Moscow, Russia
Email: saraevain@lebedev.ru, rimskaya@lebedev.ru, a.gorevoy@lebedev.ru, shelyginasn@lebedev.ru, kudryashovsi@lebedev.ru

PDF
Raman microspectroscopy is an important method for skin cancer diagnosis in the early stages. The differentiation of malignant skin tumors (basal cell carcinomas of the skin, squamous cell carcinomas), benign skin tumors (papillomas) and healthy skin was carried out by acquiring Raman spectra in vitro with laser excitation at wavelengths of 532 and 785 nm and analyzing them using the principal component method. A comparison of the spectral features of the components with known peaks of molecular vibrations was carried out. It has been shown that differential diagnosis at an excitation wavelength of 785 nm is more reliable than at 532 nm, providing a probability of correct classification above 90%. The proposed methods can be applied for in vivo analysis for non-invasive rapid diagnostics using appropriate equipment for spectra registration. Keywords: skin tumors, confocal scanning Raman microspectroscopy, principal component analysis method.
  1. R.L. Siegel, K.D. Miller, A. Jemal. CA: a cancer journal for clinicians, 73, 17 (2023). DOI: 10.3322/caac.21763
  2. E.N. Rimskaya, A.O. Shchad'ko, I.A. Apollonova, A.P. Nikolaev, A.N. Briko, I.A. Deshin, P.Yu. brezhnoy, K.G. Kudrin, K.I. Zaitsev, V.V. Tuchin, I.V. Reshetov. Opt. i spektr., 126 (5), 584 (2019). (in Russian) DOI: 10.21883/OS.2019.05.47657.6-19
  3. A. Eggermont, A. Spatz, C. Robert. The Lancet, 1 (383), 816 (2014). DOI: 10.1016/S0140-6736(13)60802-8
  4. J. Muller, J. Hartmann, C. Bert. Phys. in Medicine \& Biology, 61 (7), 2646 (2016). DOI: 10.1088/0031-9155/61/7/2646
  5. V. Neuschmelting, N.C. Burton, H. Lockau, A. Urich, S. Harmsen, V. Ntziachristos, M.F. Kircher. Photoacoustics, 4 (1), 1 (2016). DOI: 10.1016/j.pacs.2015.12.001
  6. N. MacKinnon, F. Vasefi, N. Booth, D.L. Farkas. Proc. of SPIE, 9711 (1), 971111 (2016). DOI: 10.1117/12.2222415
  7. K.I. Zaytsev, K.G. Kudrin, V.E. Karasik, I.V. Reshetov, S.O. Yurchenko. Appl. Phys. Lett., 106 (5), 053702 (2015). DOI: 10.1063/1.4907350
  8. E. Rimskaya, S. Shelygina, A. Timurzieva, I. Saraeva, E. Perevedentseva, N. Melnik, K. Kudrin, D. Reshetov, S. Kudryashov. International J. Mol. Sci., 24, 14748 (2023). DOI: 10.3390/ijms241914748
  9. G.F. Silveira, D.M. Strottmann, L. de Borba, D.S. Mansur, N.I.T. Zanchin, J. Bordignon, C.N. Duarte dos Santos. Clinical and Experimental Immunology, 183 (1), 114 (2016). DOI: 10.1111/cei.12701
  10. E.G. Borisova, I.A. Bratchenko, Y.A. Khristoforova, L.A. Bratchenko, T.I. Genova, A.I. Gisbrecht, A.A. Moryatov, S.V. Kozlov, P.P. Troyanova, V.P. Zakharov. Optical Engineering, 59, 061616 (2020). DOI: 10.1117/1.OE.59.6.061616
  11. A. Synytsya, M. Judexova, D. Hoskovec, M. Miskovicova, L. Petruzelka. J. Raman Spectrosc., 45, 903 (2014). DOI: 10.1002/jrs.4581
  12. M.S. Bergholt, W. Zheng, K. Lin, Z. Huang, K.Y. Ho, K.G. Yeoh, Mi. Teh, J.B.Y. So. J. Biomedical Optics, 16 (3), 037003 (2011). DOI: 10.1117/1.3556723
  13. L. Shang, J. Tang, J. Wu, H. Shang, X. Huang, Y. Bao, Z. Xu, H. Wang, J. Yin. Biosensors, 13, 65 (2023). DOI: 10.3390/bios13010065
  14. S. Tfaili, C. Gobinet, G. Josse, J.F. Angiboust, M. Manfait, O. Piot. Analyst, 137, 3673 (2012). DOI: 10.1039/C2AN16292J
  15. Z.W. Huang, A. Mcwilliams, H. Lui, D.I. McLean, S. Lam, H. Zeng. International J. Cancer, 107 (6), 1047 (2003). DOI: 10.1002/ijc.11500
  16. X. Feng, A.J. Moy, H.T. Nguyen, J. Zhang, M.C. Fox, K.R. Sebastian, J.S. Reichenberg, M.K. Markey, J.W. Tunnell. Biomedical Optics Express, 8, 2835 (2017). DOI: 10.1364/BOE.8.002835
  17. R. Vyumvuhore, A. Tfayli, H. Duplan, A. Delalleau, M. Manfait, A. Baillet-Guffroy. Analyst, 138, 4103 (2013). DOI: 10.1039/c3an00716b
  18. L. Silveira, S. Sathaiah, R.A. Zangaro, M.T. Pacheco, M.C. Chavantes, C.A. Pasqualucci. Lasers in Surgery and Medicine, 30 (4), 290 (2002). DOI: 10.1002/lsm.10053
  19. P.J. Caspers, H.A. Bruining, G.J. Puppels, G.W. Lucassen, E.A. Carter. J. Investigative Dermatology, 116, 434 (2001). DOI: 10.1046/j.1523-1747.2001.01258.x
  20. J. Anastassopoulou, M. Kyriakidou, E. Malesiou, M. Rallis, T. Theophanides. In Vivo, 33, 567 (2019). DOI: 10.21873/invivo.1151
  21. M. Gniadecka, H.C. Wulf, N. Nymark Mortensen, O. Faurskov Nielsen, D.H. Christensen. J. Raman Spectrosc., 28, 125 (1997). DOI: 10.1002/(SICI)1097-4555(199702)28:2/3 <125::AID-JRS65>3.0.CO;2-%23
  22. P. Rekha, P. Aruna, E. Brindha, D. Koteeswaran, M. Baludavid, S. Ganesan. J. Raman Spectrosc., 47, 763 (2016). DOI: 10.1002/jrs.4897
  23. C. Yorucu, K. Lau, S. Mittar, N.H. Green, A. Raza, I.U. Rehman, S. MacNeil. Appl. Spectrosc. Rev., 51 (4), 243 (2016). DOI: 10.1080/05704928.2015.1126840
  24. S. Sigurdsson, P.A. Philipsen, L.K. Hansen, J. Larsen, M. Gniadecka, H.C. Wulf. IEEE Transactions on Biomedical Engineering, 51, 1784 (2004). DOI: 10.1109/TBME.2004.831538
  25. X.Y. Liu, P. Zhang, L. Su, L.M. Wang, X.D. Wei, H.Q. Wang, T.F. Ling. J. Nanoscience and Nanotechnology, 18, 6776 (2018). DOI: 10.1166/jnn.2018.15510
  26. I.A. Bratchenko, L.A. Bratchenko, A.A. Moryatov, Y.A. Khristoforova, D.N. Artemyev, O.O. Myakinin, A.E. Orlov, S.V. Kozlov, V.P. Zakharov. Experimental Dermatology, 30, 652 (2021). DOI: 10.1111/exd.14301
  27. C.A. Lieber, S.K. Majumder, D. Billheimer, D.L. Ellis, A.J. Mahadevan-Jansen. Biomedical Opt., 13, 024013 (2008). DOI: 10.1117/1.2899155
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru