Physics of the Solid State
Volumes and Issues
Interaction of wrinkles and folds of a graphene sheet lying on a flat substrate
Savin A. V.1,2, Savina O. I.2
1N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Plekhanov Russian University of Economic, Moscow, Russia
Email: asavin00@gmail.com

PDF
The interaction of wrinkles and vertical folds in single-layer and multilayer graphene sheets lying on a flat substrate was simulated. It is shown that when the sheet slides freely on the substrate, the interaction of wrinkles and folds is reduced to tugging of the part of the sheet located between them. The interaction of two wrinkles always leads to the growth of the larger one due to the disappearance of the smaller one, and the interaction of a fold with a wrinkle always leads to an increase in the first and the disappearance of the second. The interaction of two folds can only lead to a change in their shape. Therefore, with low uniaxial compression, only one wrinkle can form in the sheet, and with strong uniaxial compression, only several stable folds can form. The pinning of sheet atoms on the substrate can lead to the existence of several stable wrinkles. Depinning the sheet at high temperatures leads to the disappearance of wrinkles and the formation of vertical folds from them. This scenario explains the mechanism of action of thermal annealing of small wrinkles in graphene. Keywords: graphene, graphene wrinkles and folds, flat substrate.
  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science 306, 5696, 666 (2004)
  2. A.K. Geim, K.S. Novoselov. Nature Mater. 6, 3, 183 (2007)
  3. C. Soldano, A. Mahmood, E. Dujardin. Carbon 48, 8, 2127 (2010)
  4. J.A. Baimova, B. Liu, S.V. Dmitriev, K. Zhou. Phys. Status Solidi RRL 8, 4, 336 (2014)
  5. J.A. Baimova, E.A. Korznikova, S.V. Dmitriev, B. Liu, K. Zhou. Rev. Adv. Mater. Sci. 39, 69 (2014)
  6. A.K. Geim. Science 324, 5934, 1530 (2009)
  7. C. Lee, X. Wei, J.W. Kysar, J. Hone. Science 321, 5887, 385 (2008)
  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau. Nano Lett. 8, 3, 902 (2008)
  9. Y. Liu, C. Hu, J. Huang, B.G. Sumpter, R. Qiao. J. Chem. Phys. 142, 24, 244703 (2015)
  10. L. Tapaszto, T. Dumitric, S.J. Kim, P. Nemes-Incze, C. Hwang, L.P. Biro. Nature Phys. 8, 10, 739 (2012)
  11. W. Zhu, T. Low, V. Perebeinos, A.A. Bol, Y. Zhu, H. Yan, J. Tersoff, P. Avouris. Nano Lett. 12, 7, 3431 (2012)
  12. C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, T.F. Heinz. Nature 462, 7271, 339 (2009)
  13. A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin. Carbon 45, 10, 2017 (2007)
  14. S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R.S. Ruoff, W. Cai. Nanotechnology 23, 36, 365701 (2012)
  15. C. Wang, Y. Liu, L. Li, H. Tan. Nanoscale 6, 11, 5703 (2014)
  16. Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang. ACS Nano 5, 5, 3645 (2011)
  17. M.G. Pastore Carbone, A.C. Manikas, I. Souli, C. Pavlou, C. Galiotis. Nature Commun. 10, 1572 (2019)
  18. S. Deng, D. Rhee, W.-K. Lee, S. Che, B. Keisham, V. Berry, T.W. Odom. Nano Lett. 19, 8, 5640 (2019)
  19. S. Deng, V. Berry. Mater. Today 19, 4, 197 (2016)
  20. B. Deng, J. Wu, S. Zhang, Y. Qi, L. Zheng, H. Yang, J. Tang, L. Tong, J. Zhang, Z. Liu, H. Peng. Small 14, 22, 1800725 (2018)
  21. Y. Zhang, N. Wei, J. Zhao, Y. Gong, T. Rabczuk. J. Appl. Phys. 114, 6, 063511 (2013)
  22. B.J. Cox, D. Baowan, W. Bacsa, J.M. Hill. RSC Adv. 5, 71, 57515 (2015)
  23. J. Aljedani, M.J. Chen, B.J. Cox. Mater. Res. Express 8, 1, 015002 (2020)
  24. J. Aljedani, M.J. Chen, B.J. Cox. RSC Adv. 10, 27, 16016 (2020)
  25. B.J. Cox, T. Dyer, N. Thamwattana. Mater. Res. Express 7, 8, 085001 (2020)
  26. J. Aljedani, M.J. Chen, B.J Cox. Appl. Phys. A 127, 886 (2021)
  27. K. Zhang, M. Arroyo. J. Appl. Phys. 113, 193501 (2013)
  28. K. Zhang, M. Arroyo. J. Mech. Phys. Solids 72, 61 (2014)
  29. T. Al-Mulla, Z. Qin, M.J. Buehler. J. Phys.: Condens. Matter 27, 345401 (2015)
  30. W. Zhu, Y. Liu, X. Wei. JOM 72, 3987 (2020)
  31. C. Zhao, F. Liu, X. Kong, T. Yan, F. Ding. Int. J. Smart Nano Mater. 11, 3, 277 (2020)
  32. A.V. Savin, E.A. Korznikova, S.V. Dmitriev.Phys. Rev. B 99, 235411 (2019)
  33. A.V. Savin, E.A. Korznikova, S.V. Dmitriev. Phys. Rev. B 92, 035412, (2015)
  34. A.V. Savin, E.A. Korznikova, S.V. Dmitriev. FTT 57, 11, 2278 (2015). (in Russian)
  35. Z.H. Aitken, R. Huang. J. Appl. Phys. 107, 123531 (2010)
  36. S.P. Koenig, N.G. Boddeti, M.L. Dunn, J.S. Bunch. Nature Nanotech 6, 543 (2011)
  37. F. Zheng, Q.H. Thi, L.W. Wong, Q. Deng, T.H. Ly, J. Zhao. ACS Nano 14, 2137 (2020).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru