Physics of the Solid State
Volumes and Issues
Structural and magnetic properties of Co1-xZnxFe2O4 (0≤ x≤1) nanoparticles for biomedical applications
Kamzin A. S.1, Semenov V. G. 2, Kamzina L. S.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
Magnetic nanoparticles of Zn-substituted CoFe2O4 spinel ferrites Co1-xZnxFe2O4 (at x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were successfully synthesized by chemical co-precipitation. The structural, morphological and magnetic properties of the obtained particles were studied and characterized by X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), Raman and Mossbauer spectroscopy. The introduction of zinc ions causes noticeable changes in the structural and magnetic properties of spinel ferrite. The sizes of particles of Co1-xZnxFe2O4 change from 10 to 3 nm with an increase of the number of Zn ions according to X-ray data and their sizes change from 15 to 4 nm according to Mossbauer data. It was found that the saturation magnetization increases with an increase of the amount of Zn to x=0.4 and gradually decreases with a further increase of the concentration of Zn. The important information about the difference between the magnetic structures of the surface layer and the volume of particles was obtained for the first time using Mossbauer spectroscopy without external magnetic fields. A collinear ordering of spin moments is observed in the volume of magnetic nanoparticles of ferrite Co1-xZnxFe2O4, whereas a canting spin structure is observed on the surface of particles because of the impact of the surface. The mechanism of transition of spinel ferrite MNPs from a magnetically ordered to a paramagnetic state with the introduction of paramagnetic ions is described. Studies have shown that the obtained nanoparticles are perspective in view of biomedical applications. Keywords: spinel ferrites, magnetic structure, superparamagnetism, Mossbauer spectroscopy, materials for biomedicine.
  1. J.A. Ramos-Guivar, E.O. Lopez, J.-M. Greneche, F.J. Litterst, E.C. Passamani. Appl. Surf. Sci. 538, 148021 (2021). https://doi.org/10.1016/j.apsusc.2020.148021
  2. M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomater. 11, 7, 1787 (2021). https://doi.org/10.3390/nano11071787
  3. S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika 22, 4, 411 (2015). (in Russian)
  4. V.A. Suchilin, I.E. Gribut, S.A. Golikov. Elektrotekh. i inform. komplekses and sistemy 7, 4, 41 (2011). (in Russian)
  5. E.M. Materon, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu. Appl. Surf. Sci. Adv. 6, 100163 (2021). https://doi.org/10.1016/j.apsadv.2021.100163
  6. M.G.M. Schneider, M.J. Marti n, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, M. Nedyalkova. Pharmaceutics 14, 1, 204 (2022). https://doi.org/10.3390/pharmaceutics14010204
  7. I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Magnetochemistry 5, 4, 67 (2019). DOI: 10.3390/magnetochemistry5040067
  8. A. Purohit, L. Soni, L. Thakur, J. Shrivastava, K. Khan, K. Shrivastava, S. Jain. Internat. J. Med. Sci. Pharma Res. 8, 4, 1 (2022). DOI: http://dx.doi.org/10.22270/ijmspr.v8i4.50
  9. Magnetic Nanoferrites and their Composites / Eds Susheel Kalia, Rohit Jasrotia, Virender Pratap Singh. Elsevier Ltd. (2023). https://doi.org/10.1016/B978-0-323-96115-8.00004-0
  10. Springer Ser. Mater. Sci. / Eds D. Peddis, S. Laureti, D. Fiorani. New Trends in Nanoparticle Magnetism. Part IV. Advanced Magnetic Nanoparticles Systems for Applications. V. 308. 2021. P. 301. https://doi.org/10.1007/978-3-030-60473-8
  11. V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas. Magnetochem. 6, 2 (2020). DOI: 10.3390/magnetochemistry6010002
  12. B. Wareppam, E. Kuzmann, V.K. Garg, L.H. Singh. J. Mater. Res. 38, 937 (2023). DOI:10.1557/s43578-022-00665-4.
  13. Ferrite Nanostructured Magnetic Materials / Eds J.P. Singh, K.H. Chae, R.C. Srivastava, O.F. Caltun. Woodhead Publishing Series Elsevier Ltd. (2023). 892 p. https://doi.org/10.1016/C2020-0-00253-7
  14. P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier. Ceram. Int. 47, 10512 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289
  15. Syed Ismail Ahmad. J. Magn. Magn. Mater. 562, 169840 (2022). https://doi.org/10.1016/j.jmmm.2022.169840
  16. M. Sajid, J. P otka-Wasylka. Microchem. J. 154, 104623 (2020). https://doi.org/10.1016/j.microc.2020.104623
  17. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M.S. Asl. Ceram. Int. 46, 18391 (2020). https://doi.org/10.1016/j.ceramint.2020.04.202
  18. A.S. Kamzin, D.S. Nikam, S.H. Pawar. Phys. Solid State 59, 1, 156 (2022). DOI: 10.1134/S1063783417010127
  19. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 64, 6, 714 (2022). DOI: 10.21883/PSS.2022.06.53838.298
  20. K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314
  21. A. Mittal, I. Roy, S. Gandhi. Magnetochem, 8, 107 (2022). https://doi.org/10.3390/magnetochemistry8090107
  22. C. Janko, T. Ratschker, K. Nguyen, L. Zschiesche, R. Tietze, S. Lyer, C. Alexiou. Frontiers Oncology 9, 59 (2019). DOI: 10.3389/fonc.2019.00059
  23. O.F. Odio, E. Reguera. In: Magnetic Spinels --- Synthesis, Properties and Applications. IntechOpen. (2017). Ch. 9. P. 186. http://dx.doi.org/10.5772/67513/
  24. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar. RSC Adv. 5, 2338 (2015). DOI: 10.1039/c4ra08342c
  25. J. Mohapatra, M. Xing, J.P. Liu. Materials 12, 3208 (2019). DOI: 10.3390/ma12193208
  26. M. Albino, E. Fantechi, C. Innocenti, A. Lopez-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando et al. J. Phys. Chem. C 123, 6148 (2019)
  27. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas. Nanoscale 8, 10124 (2016)
  28. M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath. Nano-Struct. Nano-Objects 19, 100322 (2019). https://doi.org/10.1016/j.nanoso.2019.100322
  29. V. Pilati, R.C. Gomes, G. Gomide, P. Coppola, F.G. Silva, F.L.O. Paula, R. Perzynski, G.F. Goya, R. Aquino, J. Depeyrot. J. Phys. Chem. C 122, 3028 (2018)
  30. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544
  31. T. Iwamoto, T. Ishigaki. J. Phys.: Conf. Ser. 441, 012 034 (2013)
  32. P. Scherrer. Gottinger Nachrichten Math. Phys. 2, 98 (1918)
  33. V.G. Semenov, V.V. Panchuk. Mossbauer Spectra Processing Software MossFit. Private message.
  34. M. Sundararajana, V. Sailajab, L.J. Kennedya, J.J. Vijaya. Ceram. Int. 43, 540 (2017). http://dx.doi.org/10.1016/j.ceramint.2016.09.191
  35. A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh, L. Astakhova, S. Antipov, B. Fabiano, D. Peddis, V. Rodionova. Materials 13, 5014 (2020). DOI: 10.3390/ma13215014
  36. F. Nakagomi, P.E.N. de Souza, T.J. Castro, V.K. Garg, A.C. Oliveira, F.C. de Silva, Franco Jr., P.C. Morais, S.W. da Silva. J. All. Comp. 842, 155751 (2020). https://doi.org/10.1016/j.jallcom.2020.155751
  37. L.B. Tahar, H. Basti, F. Herbst, L.S. Smiri, J.P. Quisefit, N. Yaacoub, J.M. Gren\`eche, S. Ammar. Mater. Res. Bull. 47, 2590 (2012). http://dx.doi.org/10.1016/j.materresbull.2012.04.080
  38. P. Monisha, P. Priyadharshini, S.S. Gomathi, M. Mahendran, K. Pushpanathan. App. Phys. A 125, 736 (2019). https://doi.org/10.1007/s00339-019-3014-x
  39. V.K. Lakshmi, G.S. Kumar, A. Anugraha, T. Raguram, K.S. Rajni. IOP Conf. Ser.: Mater. Sci. Eng. 577, 012068 (2019). DOI: 10.1088/1757-899X/577/1/012068
  40. J.P. Singh, R.C. Srivastava, H.M. Agrawal, R. Kumar. J. Raman Spectrosc. 42, 1510 (2011). DOI: 10.1002/jrs.2902
  41. P.T. Phong, P.H. Nam, N.X. Phuc, B.T. Huy, L.T. Lu, D.H. Manh, IN-JA Lee. Met. Mater. Trans. A 50, 1571 (2019). https://doi.org/10.1007/s11661-018-5096-z
  42. R.S. Yadav, J. Havlica, M. Hnatko, P. vSajgali k, C. Alexander, M. Palou, E. Bartonckova, M. Bohavc, F. Frajkorova, J. Masilko, M. Zmrzly, L. Kalina, M. Hajduchova, V. Enev. J. Magn. Magn. Mater. 378, 190 (2015). https://doi.org/10.1016/j.jmmm.2014.11.027
  43. S.W. da Silva, M. Naik, F. Nakagomi, M.S. Silva, A. Franco Jr., V.K. Garg, A.C. Oliveira, P.C. Morais. J. Nanopart. Res. 14, 798 (2012). DOI: 10.1007/s11051-012-0798-4
  44. J. Smit, H.P.J. Wijn. Les ferrites. Les Proprietes: Physiques des Oxydes Ferrimagnetiques en Relation avec leurs Applications Techniques. Bibliothe`que Technique de Philips. (1961). P. 400
  45. R. Arulmurugana, G. Vaidyanathana, S. Sendhilnathanb, B. Jeyadevan. Physica B 363, 225 (2005). DOI: 10.1016/j.physb.2005.03.025
  46. G. Vaidyanathana, S. Sendhilnathan. Phys. B 403, 2157 (2008). DOI: 10.1016/j.physb.2007.08.219
  47. Y.S. Gaiduk, E.V. Korobko, K.A. Shevtsova, D.A. Kotikov, I.A. Svito, A.E. Usenko, D.V. Ivashenko, A. Fahmy, V.V. Pankov. Kondensirovannye sredy i mezhfaznye granitsy, 22, 1, 28 (2020). (in Russian). DOI: https://doi.org/10.17308/kcmf.2020.22/2526
  48. H.L. Andersen, C. Granados-Miralles, M. Saura-Muzquiz, M. Stingaciu, J. Larsen, F. S ndergaard-Pedersen, J.V. Ahlburg, L. Keller, C. Frandsen, M. Christensen. Mater. Chem. Front. 3, 668 (2019). DOI: 10.1039/c9qm00012g
  49. H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsib, I. Shakirc, H. Wahab, M. Asghar, M.A. Khan. Ceram. Int. 40, 9439 (2014). http://dx.doi.org/10.1016/j.ceramint.2014.02.015
  50. X.H. Li, C.L. Xu, X.H. Han, L. Qiao, T. Wang, F.S. Li. Nanoscale Res. Lett. 5, 1039 (2010)
  51. L. Neel. Ann. Phys. (Paris) 3, 137 (1948).
  52. Y. Yafet, C. Kittel. Phys. Rev. 87, 2, 290 (1952). DOI: 10.1103/physrev.87.290 10.1103/PhysRev.87.290
  53. S. Chikazumi. Physics of ferromagnetism. Oxford University Press, Oxford (1997). P. 502
  54. Applications of Mossbauer Spectroscopy. 1st ed. / Ed. R.L. Cohen. Elsevier (1980)
  55. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
  56. M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M.A. Elkodous, A.H. Ashour, A.S. Awed. J Inorg. Organomet. Polym. Mater. 30, 3709 (2020). https://doi.org/10.1007/s10904-020-01523-8
  57. V. Sepelak, D. Baabe, F.J. Litterst, K.D. Becker. J. App. Phys. 88, 10, 5884 (2000). DOI: 10.1063/1.1316048
  58. G.A. Petitt, D.W. Forester. Phys. Rev. B 4, 11, 3912 (1971)
  59. A. Ghasemi, V. vSepelak, S.E. Shirsath, X. Liu, A. Morisako. J. Appl. Phys. 109, 07A512 (2011). DOI: 10.1063/1.3553777
  60. W. Bayoumi. J. Mater. Sci. 42, 8254 (2007). DOI: 10.1007/s10853-007-1616-8
  61. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He. Mater. 11, 1799 (2018). DOI: 10.3390/ma11101799
  62. T. Tatarchuk, N. Paliychuk, M. Pacia, W. Kaspera, W. Macyk, A. Kotarba, B.F. Bogacz, A.T. Pedziwiatr, I. Mironyuk, R. Gargula, P. Kurzyd o, A. Shyichuk. New J. Chem. 43, 7, 3038 (2019). https://doi.org/10.1039/C8NJ05329D
  63. H.H. Joshi, P.B. Pandya, R.G. Kulkarni. Solid State Commun. 86, 12, 807 (1993)
  64. A. Bouhas, M. Amzal, B. Zouranen. Mater. Chem. Phys. 33, 1-2, 80 (1993). https://doi.org/10.1016/0254-0584(93)90094-3
  65. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani. Phys. Rev. B 63, 18, 184108 (2001)
  66. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 1, 747 (1969)
  67. S.P. Yadav, S.S. Shinde, P. Bhatt, S.S. Meena, K.Y. Rajpure. J. Alloys Compd. 646, 550 (2015). http://dx.doi.org/10.1016/j.jallcom.2015.05.270
  68. E. Lima Jr., E. De Biasi, M.V. Mansilla, M.E. Saleta, F. Effenberg, L.M. Rossi, R. Cohen, H.R. Rechenberg, R.D. Zysler. J. App. Phys. 108, 103919 (2010). DOI: 10.1063/1.3514585
  69. S.C. Bhargava, P.K. Iyengar. Phys. Status Solidi B 53, 1, 359 (1972). https://doi.org/10.1002/pssb.2220530138
  70. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah. Phys. B: Condens. Matter. 534, 134 (2018). https://doi.org/10.1016/j.physb.2018.01.033
  71. T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V. Moklyak. J. Alloy. Compd. 694, 777 (2017). https://doi.org/10.1016/j.jallcom.2016.10.067
  72. M.M. Kothawale, R. Pednekar, U.B. Gawas, S.S. Meena, N. Prasad, S. Kumar. J. Supercond. Nov. Magn. 30, 2, 395 (2017)
  73. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, P. Bhatt, S. Kumar, E. Senturk, R. Kumar, N. Gupta, Alimuddin. J. Magn. Magn. Mater. 360, 21 (2014). http://dx.doi.org/10.1016/j.jmmm.2014.01.047
  74. N. Velinov, E. Manova, T. Tsoncheva, C. Estournes, D. Paneva, K. Tenchev, V. Petkova, K. Koleva, B. Kunev, I. Mitov. Solid State Sci. 14, 1092 (2012). Doi.10.1016/j.solidstatesciences.2012.05.023
  75. R.S. de Biasi, L.H.G. Cardoso. Physica B 407, 18, 3893 (2012). http://dx.doi.org/10.1016/j.physb.2012.06.017
  76. J.Z. Msomi, W.B. Dlamini, T. Moyo, P. Ezekiel. J. Magn. Magn. Mater. 373, 68 (2015). DOI: 10.1016/j.jmmm.2014.01.044
  77. B.F. Bogacz, R. Gargula, P. Kurzyd o, A.T. Pedziwiatr, T. Tatarchuk, N. Paliychuk. Acta Phys. Polonica A 134, 5, 993 (2018)
  78. E. Wu, S.J. Campbell, W.A. Kaczmareka, M. Hofmann, S.J. Kennedy. Int. J. Mater. Res. 94, 10, 1127 (2003)
  79. J. Chappert, R.B. Frankel. Phys. Rev. Lett. 12, 570 (1967)
  80. A.S. Kamzin, V.G. Semenov, I.A. Al-Omari, V. Narayanaswamy, B. Issa. Phys. Solid State 65, 8, 1363 (2022). DOI: 10.61011/PSS.2023.08.56586.122
  81. I.S. Lyubutin, S.S. Starchikov, T.V. Bukreeva, I.A. Lysenko, S.N. Sulyanov, N.Y. Korotkov, S.S. Rumyantseva, I.V. Marchenko, K.O. Funtov, A.L. Vasiliev. Mater. Sci. Eng. C 45, 225 (2014). https://doi.org/10.1016/j.msec.2014.09.017
  82. I.S. Lyubutin, S.S. Starchikov, L. Chun-Rong, N.E. Gervits, N.Y. Korotkov, T.V. Bukreeva. Croat. Chem. Acta 88, 397 (2015). https://doi.org/10.5562/cca2739
  83. D. Kedem, T. Rothem. Phys. Rev. Lett. 18, 165 (1967)
  84. J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
  85. Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p
  86. I.M. Obaidat, V. Mohite, B. Issa, N. Tit, Y. Haik. Cryst. Res. Tech. 44, 5, 489 (2009). DOI: 10.1002/crat.200900022
  87. L. Neel. J. Physique 15, 4, 225 (1954)
  88. A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
  89. A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
  90. A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Int. Conf. USSR. Proc. Part II, 271 (1988)
  91. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417 (1990)
  92. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. 35, 7, 840 (1990)
  93. F. Schaaf, U. Gonser. Hyperfine Interact. 57, 1-4, 2101 (1990)
  94. U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 1-4, 95 (1991)
  95. A.S. Kamzin. JETP 89, 5, 891 (1999)
  96. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
  97. A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
  98. A.S. Kamzin, L.P. Olkhovik. FTT 41, 10, 1806 (1999). (in Russian)
  99. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
  100. A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020). DOI: https://link.springer.com/article/10.1134/ S1063783420100157
  101. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
  102. G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. prikl. spektroskopii 86, 3, 374 (2019). (in Russian).
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru