Piezoconductivity of graphene nanoribbons. Elastic-plastic deformations
Lebedeva O. S.
1, Lebedev N. G.
11Volgograd State University, Volgograd, Russia
Email: lebedeva_os@volsu.ru, nikolay.lebedev@volsu.ru
In this work, the piezoresistive properties of a two-dimensional material are studied using the example of a fragment of graphene nanoribbons of the "arm-chair" and "zig-zag" types. The dependence of the longitudinal component of the piezoconductivity tensor of nanoribbons on the value of a relative elastic-plastic deformation is analyzed. It has been shown that conductive ribbons exhibit stable piezoresistive properties which do not depend on its width, but depend only on the structural modification of the zig-zag or arm-chair. Small plastic deformations abruptly change the longitudinal component for zig-zag ribbons by an order of magnitude more than for arm-chair ribbons. Semiconductor ribbons of relatively small width have a "hyperpiezoresistance" effect, which disappears with increasing the ribbon width in proportion to the decrease in the band gap. Keywords: straintronics, graphene, nanoribbons, piezoresistive effect, elastic-plastic deformations.
- A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Yu.K. Fetisov. UFN 188, 12, 1288 (2018). (in Russian)
- C.S. Smith. Phys. Rev. 94, 6, 42 (1954)
- M. Din. Poluprovodnikovye tenzodatchiki. Energiya, M. (1968) 215 p
- L.S. Ilyinskaya, A.N. Podmarkov. Poluprovodnikovye tenzodatchiki. Energiya, M. (1966) 118 p. (in Russian)
- G.L. Bir, G.E. Pikus. Simmetriya i deformacionnye effekty v poluprovodnikakh. Nauka, M. (1972). 584 p. (in Russian)
- I.V. Antonova. UFN 192, 6, 609 (2022). (in Russian)
- P.B. Sorokin, L.A. Chernozatonsky. UFN 183, 2, 113 (2013). (in Russian)
- L.A. Chernozatonsky, P.B. Sorokin, A.A. Artyukh. Uspekhi khimii 83, 3, 251 (2014)
- A.L. Kolesnikova, A.E. Romanov. FTT 45, 9, 1626 (2003). (in Russian)
- A.H. Akhunova, Yu.A. Baimova. FTT 93, 4, 445 (2023). (in Russian)
- A.G. Rybkin, A.V. Tarasov, A.A. Gogina, A.V. Yeryzhenkov, A.A. Rybkina. Pisma v ZhETF 117, 8, 626 (2023). (in Russian)
- Physics of graphene. Series Nanoscience and Technology / Ed. H. Aoki, M.S. Dresselhaus. Springer International Publishing, Switzerland (2014). 345 p
- K. Wakabayashi, K. Sasaki, T. Nakanishi, T. Enoki. Sci. Technol. Adv. Mater. 11, 054504 (2010)
- L.D. Landau, E.M. Lifshitz. Teoreticheskaya fizika. Fizmatlit, M. (2003). T. VII. 264 p
- O.S. Lyapkosova, N.G. Lebedev. FTT 54, 7, 1412 (2012). (in Russian)
- O.S. Lebedeva, N.G. Lebedev. Him. Fizika 33, 10, 73 (2014). (in Russian)
- O.S. Lebedeva, N.G. Lebedev, I.A. Lyapkosova. Math. Physics and Comp. Simulation 21, 1, 53 (2018)
- O.S. Lebedeva, N.G. Lebedev, I.A. Lyapkosova. J. Phys.: Condens.Matter 32, 14, 145301 (2020)
- O.S. Lebedeva, N.G. Lebedev, I.A. Lyapkosova. Zhurn. fiz. khimii 94, 8, 1232 (2020). (in Russian)
- A. Nadai. Plastichnost i razrushenie tverdykh tel. IL, M. (1954). T. 1. 648 p. (in Russian)
- A.C. McRae, G. Wei, A.R. Champagne. Phys. Rev. Appl. 11, 054019 (2019)
- A. Sinha, A. Sharma, P. Priyadarshi, A. Tulapurkar, B. Muralidharan. Phys. Rev. Res. 2, 043041 (2020)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.