Physics of the Solid State
Volumes and Issues
Molecular dynamics study of the effect of grain size on the melting point of nanocrystalline aluminum
Poletaev G. M. 1, Sitnikov A. A. 1, Filimonov V. Y. 1,2, Yakovlev V. I. 1, Kovalenko V. V. 3
1Polzunov Altai State Technical University, Barnaul, Russia
2Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
3Siberian State Industrial University, Novokuznetsk, Russia
Email: gmpoletaev@mail.ru, sitalan@mail.ru, vyfilimonov@rambler.ru, yak1961@yandex.ru, vikt.kowalencko@yandex.ru

PDF
Using molecular dynamics simulation, the influence of the average grain size and excess energy due to the presence of grain boundaries on the melting point of nanocrystalline aluminum was studied. In the considered range of grain sizes from 2.5 to 10 nm, the difference between the melting point and the melting point of a pure crystal turned out to be inversely proportional to the average grain size and directly proportional to the excess energy. Melting proceeded heterogeneously and began primarily from grain boundaries. When studying recrystallization in nanocrystalline aluminum, it was found that it occurs more intensely as the temperature approaches the melting point, as well as at a smaller initial grain size. Keywords: molecular dynamics, melting, nanocrystalline structure, recrystallization.
  1. H. Gleiter. Acta Mater. 48, 1, 1 (2000). https://doi.org/10.1016/S1359-6454(99)00285-2
  2. M.A. Meyers, A. Mishra, D.J. Benson. Prog. Mater. Sci. 51, 427 (2006). https://doi.org/10.1016/j.pmatsci.2005.08.003
  3. K.S. Kumar, H. Van Swygenhoven, S. Suresh. Acta Mater. 51, 5743 (2003). https://doi.org/10.1016/j.actamat.2003.08.032
  4. T.D. Thangadurai, N. Manjubaashini, S. Thomas, H.J. Maria. Nanostructured Materials. Springer (2020). 221 p
  5. N.F. Shkodich, A.S. Rogachev, S.G. Vadchenko, N.V. Sachkova, R. Chassagnon. Int. J. Self-Propag. High-Temp. Synth. 21, 104 (2012). https://doi.org/10.3103/S1061386212020100
  6. F. Maglia, C. Milanese, U. Anselmi-Tamburini, S. Doppiu, G. Cocco, Z.A. Munir. J. Alloys Compd. 385, 269 (2004). https://doi.org/10.1016/j.jallcom.2004.03.142
  7. F. Maglia, C. Milanese, U. Anselmi-Tamburini. J. Mater. Res. 17, 8, 1992 (2002). https://doi.org/10.1557/JMR.2002.0295
  8. A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Yu. Kovalev, S. Rouvimov, A.A. Nepapushev, A.S. Mukasyan. J. Alloys Compd. 577, 600 (2013). http://dx.doi.org/10.1016/j.jallcom.2013.06.114
  9. V.Y. Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Y. Myasnikov. Combust. Sci. Technol. 192, 3, 457 (2020). https://doi.org/10.1080/00102202.2019.1571053
  10. M.V. Loginova, V.I. Yakovlev, V.Yu. Filimonov, A.A. Sitnikov, A.V. Sobachkin, S.G. Ivanov, A.V. Gradoboev. Lett. Mater. 8, 2, 129 (2018). https://doi.org/10.22226/2410-3535-2018-2-129-134
  11. S.R. Phillpot, J.F. Lutsko, D. Wolf, S. Yip. Phys. Rev. B 40, 2831 (1989). https://doi.org/10.1103/PhysRevB.40.2831
  12. S. Xiao, W. Hu, J. Yang. J. Phys. Chem. B 109, 43, 20339 (2005). https://doi.org/10.1021/jp054551t
  13. S. Xiao, W. Hu, J. Yang. J. Chem. Phys. 125, 18, 184504 (2006). https://doi.org/10.1063/1.2371112
  14. T. Wejrzanowski, M. Lewandowska, K. Sikorski, K.J. Kurzydlowski. J. Appl. Phys. 116, 16, 164302 (2014). https://doi.org/10.1063/1.4899240 15
  15. Z. Noori, M. Panjepour, M. Ahmadian. J. Mater. Res. 30, 1648 (2015). https://doi.org/10.1557/jmr.2015.109
  16. G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov. Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358
  17. G. Poletaev, Y. Gafner, S. Gafner, Y. Bebikhov, A. Semenov. Metals 13, 10, 1664 (2023). https://doi.org/10.3390/met13101664
  18. G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Lett. Mater. 13, 4, 298 (2023). https://doi.org/10.22226/2410-3535-2023-4-298-303
  19. R.R. Zope, Y. Mishin. Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102
  20. Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee. Comput. Mater. Sci. 119, 1 (2016). https://doi.org/10.1016/j.commatsci.2016.03.038
  21. Q.-X. Pei, M.H. Jhon, S.S. Quek, Z. Wu. Comput. Mater. Sci. 188, 110239 (2021). https://doi.org/10.1016/j.commatsci.2020.110239
  22. G.M. Poletayev, R.Yu. Rakitin. FTT 64, 4, 412 (2022). (in Russian). https://doi.org/10.21883/FTT.2022.04.52180.247
  23. H. Tsuzuki, P.S. Branicio, J.P. Rino. Comput. Phys. Commun. 177, 518 (2007). https://doi.org/10.1016/j.cpc.2007.05.018
  24. T.D. Nguyen, C.C. Nguyen, V.H. Tran. RSC Advances 7, 25406 (2017). https://doi.org/10.1039/C6RA27841H
  25. W.-L. Chan, R.S. Averback, D.G. Cahill, Y. Ashkenazy. Phys. Rev. Lett. 102, 095701 (2009). https://doi.org/10.1103/PhysRevLett.102.095701
  26. H.Y. Zhang, F. Liu, Y. Yang, D.Y. Sun. Sci. Rep. 7, 10241 (2017). https://doi.org/10.1038/s41598-017-10662-x
  27. Y. Qi, T. Cagin, W.L. Johnson, W.A. Goddard III. J. Chem. Phys. 115, 385 (2001). https://doi.org/10.1063/1.1373664
  28. A. Safaei, M. Attarian Shandiz, S. Sanjabi, Z.H. Barber. J. Phys. Chem. C 112, 99 (2008). https://doi.org/10.1021/jp0744681
  29. S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li. Phys. Chem. Chem. Phys. 13, 22, 10652 (2011). https://doi.org/10.1039/c0cp90161j
  30. V.M. Samsonov, S.A. Vasiliev, A.G. Bembel. PhMM 117, 8, 775 (2016). https://doi.org/10.7868/S0015323016080131
  31. K.K. Nanda. Phys. Lett. A 376, 19, 1647 (2012). https://doi.org/10.1016/j.physleta.2012.03.055
  32. G. Guisbiers, M. Kazan, O. Van Overschelde, M. Wautelet, S. Pereira. J. Phys. Chem. C 112, 4097 (2008). https://doi.org/10.1021/jp077371n
  33. G.M. Poletaev, A.A. Sitnikov, V.I. Yakovlev, V.Yu. Filimonov. ZhETF 161, 2, 221 (2022). (in Russian). https://doi.org/10.31857/S0044451022020079
  34. D. Prokoshkina, V.A. Esin, G. Wilde, S.V. Divinski. Acta Mater. 61, 14, 5188 (2013). https://doi.org/10.1016/j.actamat.2013.05.010
  35. A.L. Petelin, A.A. Novikov, I.V. Apykhtina. Mater. Sci. Eng. 4, 1, 9 (2020). https://doi.org/10.15406/mseij.2020.04.00119

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru