Molecular dynamics study of the effect of grain size on the melting point of nanocrystalline aluminum
Poletaev G. M.
1, Sitnikov A. A.
1, Filimonov V. Y.
1,2, Yakovlev V. I.
1, Kovalenko V. V.
31Polzunov Altai State Technical University, Barnaul, Russia
2Institute for Water and Environmental Problems SB RAS, Barnaul, Russia
3Siberian State Industrial University, Novokuznetsk, Russia
Email: gmpoletaev@mail.ru, sitalan@mail.ru, vyfilimonov@rambler.ru, yak1961@yandex.ru, vikt.kowalencko@yandex.ru
Using molecular dynamics simulation, the influence of the average grain size and excess energy due to the presence of grain boundaries on the melting point of nanocrystalline aluminum was studied. In the considered range of grain sizes from 2.5 to 10 nm, the difference between the melting point and the melting point of a pure crystal turned out to be inversely proportional to the average grain size and directly proportional to the excess energy. Melting proceeded heterogeneously and began primarily from grain boundaries. When studying recrystallization in nanocrystalline aluminum, it was found that it occurs more intensely as the temperature approaches the melting point, as well as at a smaller initial grain size. Keywords: molecular dynamics, melting, nanocrystalline structure, recrystallization.
- H. Gleiter. Acta Mater. 48, 1, 1 (2000). https://doi.org/10.1016/S1359-6454(99)00285-2
- M.A. Meyers, A. Mishra, D.J. Benson. Prog. Mater. Sci. 51, 427 (2006). https://doi.org/10.1016/j.pmatsci.2005.08.003
- K.S. Kumar, H. Van Swygenhoven, S. Suresh. Acta Mater. 51, 5743 (2003). https://doi.org/10.1016/j.actamat.2003.08.032
- T.D. Thangadurai, N. Manjubaashini, S. Thomas, H.J. Maria. Nanostructured Materials. Springer (2020). 221 p
- N.F. Shkodich, A.S. Rogachev, S.G. Vadchenko, N.V. Sachkova, R. Chassagnon. Int. J. Self-Propag. High-Temp. Synth. 21, 104 (2012). https://doi.org/10.3103/S1061386212020100
- F. Maglia, C. Milanese, U. Anselmi-Tamburini, S. Doppiu, G. Cocco, Z.A. Munir. J. Alloys Compd. 385, 269 (2004). https://doi.org/10.1016/j.jallcom.2004.03.142
- F. Maglia, C. Milanese, U. Anselmi-Tamburini. J. Mater. Res. 17, 8, 1992 (2002). https://doi.org/10.1557/JMR.2002.0295
- A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Yu. Kovalev, S. Rouvimov, A.A. Nepapushev, A.S. Mukasyan. J. Alloys Compd. 577, 600 (2013). http://dx.doi.org/10.1016/j.jallcom.2013.06.114
- V.Y. Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Y. Myasnikov. Combust. Sci. Technol. 192, 3, 457 (2020). https://doi.org/10.1080/00102202.2019.1571053
- M.V. Loginova, V.I. Yakovlev, V.Yu. Filimonov, A.A. Sitnikov, A.V. Sobachkin, S.G. Ivanov, A.V. Gradoboev. Lett. Mater. 8, 2, 129 (2018). https://doi.org/10.22226/2410-3535-2018-2-129-134
- S.R. Phillpot, J.F. Lutsko, D. Wolf, S. Yip. Phys. Rev. B 40, 2831 (1989). https://doi.org/10.1103/PhysRevB.40.2831
- S. Xiao, W. Hu, J. Yang. J. Phys. Chem. B 109, 43, 20339 (2005). https://doi.org/10.1021/jp054551t
- S. Xiao, W. Hu, J. Yang. J. Chem. Phys. 125, 18, 184504 (2006). https://doi.org/10.1063/1.2371112
- T. Wejrzanowski, M. Lewandowska, K. Sikorski, K.J. Kurzydlowski. J. Appl. Phys. 116, 16, 164302 (2014). https://doi.org/10.1063/1.4899240 15
- Z. Noori, M. Panjepour, M. Ahmadian. J. Mater. Res. 30, 1648 (2015). https://doi.org/10.1557/jmr.2015.109
- G.M. Poletaev, Y.V. Bebikhov, A.S. Semenov. Mater. Chem. Phys. 309, 128358 (2023). https://doi.org/10.1016/j.matchemphys.2023.128358
- G. Poletaev, Y. Gafner, S. Gafner, Y. Bebikhov, A. Semenov. Metals 13, 10, 1664 (2023). https://doi.org/10.3390/met13101664
- G.M. Poletaev, Y.Y. Gafner, S.L. Gafner. Lett. Mater. 13, 4, 298 (2023). https://doi.org/10.22226/2410-3535-2023-4-298-303
- R.R. Zope, Y. Mishin. Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102
- Y.-K. Kim, H.-K. Kim, W.-S. Jung, B.-J. Lee. Comput. Mater. Sci. 119, 1 (2016). https://doi.org/10.1016/j.commatsci.2016.03.038
- Q.-X. Pei, M.H. Jhon, S.S. Quek, Z. Wu. Comput. Mater. Sci. 188, 110239 (2021). https://doi.org/10.1016/j.commatsci.2020.110239
- G.M. Poletayev, R.Yu. Rakitin. FTT 64, 4, 412 (2022). (in Russian). https://doi.org/10.21883/FTT.2022.04.52180.247
- H. Tsuzuki, P.S. Branicio, J.P. Rino. Comput. Phys. Commun. 177, 518 (2007). https://doi.org/10.1016/j.cpc.2007.05.018
- T.D. Nguyen, C.C. Nguyen, V.H. Tran. RSC Advances 7, 25406 (2017). https://doi.org/10.1039/C6RA27841H
- W.-L. Chan, R.S. Averback, D.G. Cahill, Y. Ashkenazy. Phys. Rev. Lett. 102, 095701 (2009). https://doi.org/10.1103/PhysRevLett.102.095701
- H.Y. Zhang, F. Liu, Y. Yang, D.Y. Sun. Sci. Rep. 7, 10241 (2017). https://doi.org/10.1038/s41598-017-10662-x
- Y. Qi, T. Cagin, W.L. Johnson, W.A. Goddard III. J. Chem. Phys. 115, 385 (2001). https://doi.org/10.1063/1.1373664
- A. Safaei, M. Attarian Shandiz, S. Sanjabi, Z.H. Barber. J. Phys. Chem. C 112, 99 (2008). https://doi.org/10.1021/jp0744681
- S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li. Phys. Chem. Chem. Phys. 13, 22, 10652 (2011). https://doi.org/10.1039/c0cp90161j
- V.M. Samsonov, S.A. Vasiliev, A.G. Bembel. PhMM 117, 8, 775 (2016). https://doi.org/10.7868/S0015323016080131
- K.K. Nanda. Phys. Lett. A 376, 19, 1647 (2012). https://doi.org/10.1016/j.physleta.2012.03.055
- G. Guisbiers, M. Kazan, O. Van Overschelde, M. Wautelet, S. Pereira. J. Phys. Chem. C 112, 4097 (2008). https://doi.org/10.1021/jp077371n
- G.M. Poletaev, A.A. Sitnikov, V.I. Yakovlev, V.Yu. Filimonov. ZhETF 161, 2, 221 (2022). (in Russian). https://doi.org/10.31857/S0044451022020079
- D. Prokoshkina, V.A. Esin, G. Wilde, S.V. Divinski. Acta Mater. 61, 14, 5188 (2013). https://doi.org/10.1016/j.actamat.2013.05.010
- A.L. Petelin, A.A. Novikov, I.V. Apykhtina. Mater. Sci. Eng. 4, 1, 9 (2020). https://doi.org/10.15406/mseij.2020.04.00119
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.