Terahertz waves generation in the cavity contains asymmetrical hyperbolic memamaterial
Kozina O. N.1, Melnikov L. A.2
1Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
2Yuri Gagarin State Technical University of Saratov, Saratov, Russia
Email: kozinaolga@yandex.ru

PDF
Theoretical investigation of the terahertz waves propagation and generation in the cavity containing asymmetric hyperbolic metamaterial. The metamaterial under investigation is a nanoscale structure composed of periodically arranged layers of a semiconductor and inverted graphene. The aim of investigation is development of the component base for creating devices for terahertz generation and manipulation. The radiation characteristics in the cavity have been investigated by the transfer matrix method. The transformation of the electromagnetic field in a hyperbolic metamaterial, which is an anisotropic media, is described by Berreman matrix. A hyperbolic metamaterial is considered as a homogeneous medium with effective parameters due to the smallness of its period. Homogenization was carried out using the Maxwell-Garnett method. The conditions for efficient THz generation and the frequency range for THz generation are determined. The range of deviations of the tilt angle values of the optical axis of hyperbolic metamaterial for which the generation condition is satisfied and the effect of this angle variations on the generation frequency are determined. An estimation of the maximum allowable values of the asymmetrical hyperbolic metamaterial period have done. The saturation intensity of graphene amplification and the expected THz radiation field strength are calculated. Keywords: graphene, nanostructure, frequency of generation, saturation.
  1. X.-C. Zhang, J. Xu. Introduction to THz Wave Photonics (Springer-Verlag, NY., 2009)
  2. A. Khalatpour, A.K. Paulsen, Ch. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photonics, 15 (1), 16 (2012). DOI: 10.1038/s41566-020-00707-5
  3. I. Smolyaninov, V.N. Smolyaninova. Solid-State Electron., 136, 102 (2017). DOI: 10.1016/j.sse.2017.06.022
  4. T. Guo, L. Zhu, P.-Y. Chen, C. Argyropoulos. Opt. Mater. Express, 8, 3941 (2018). DOI: 10.1364/OME.8.003941
  5. O.N. Kozina, L.A. Melnikov. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Fizika, 19 (2), 122 (2019) (in Russian). DOI: 10.18500/1817-3020-2019-19-2-122-131
  6. F.I. Fedorov. Optika anizotropnyh sred (Academy of Sciences of the BSSR, Minsk, 1958)
  7. L. Felsen, N. Marcuvitz. Radiation and Scattering of Waves (Englewood Cliffs. NJ.: Prentice-Hall, USA, 1973)
  8. V. Iorsh, I.S. Mukhin, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar. Phys. Rev. B, 87, 075416 (2013). DOI: 10.1103/PhysRevB.87.075416
  9. J. Sun, J. Zhou, B. Li, F. Kang. Appl. Phys. Lett., 98 (10), 101901 (2011). DOI: 10.1063/1.3562033
  10. D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A.A. Dubinov, A. Satou, M. Ryzhii, V. Ryzhii, T. Otsuji. Nanophotonics, 7, 741 (2018). DOI: 10.1515/nanoph-2017-0106
  11. D.V. Fateev, K.V. Mashinsky, V.V. Popov. Appl. Phys. Lett., 110, 061106 (2017). DOI: 10.1063/1.4975829
  12. I.S. Nefedov, C.A. Valaginnopoulos, L.A. Melnikov. J. Opt., 15, 114003 (2013). DOI: 10.1088/2040-8978/15/11/114003
  13. O.N. Kozina, L.A. Melnikov. Radiotekhnika i elektronika, 67 (10), 1058 (2022) (in Russian). DOI: 10.31857/S0033849422100060 [O.N. Kozina, L.A. Melnikov. J. Commun. Technol. Electron., 67 (10), 1304 (2022). DOI: 10.1134/S1064226922100060]
  14. O.S. Kidwai, V. Zhukovsky, J.E. Sipe. Phys. Rev. A, 85, 053842(12) (2012). DOI: 10.1103/PhysRevA.85.053842
  15. A.A. Dubinov, V.Ya. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii. J. Phys. Condens. Matter., 23, 145302 (2011). DOI: 10.1088/0953-8984/23/14/145302
  16. C. Virojanadara, M. Syvajarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian. Phys. Rev. B, 78, 245403 (2008). DOI: 10.1103/PhysRevB.78.245403
  17. H. Mutschke, A.C. Andersen, D. Clement, Th. Henning, G. Peiter. Astron. Astrophys., 345, 87 (1999)
  18. J. Chen, Z.H. Levine, J.W. Wilkins. Phys. Rev. B, 50 (16), 11514 (1994)
  19. D.W. Berreman. J. Opt. Soc. Am., 62(4), 1157 (1972)
  20. D.A. Yakovlev, V.G. Chigrinov. Modeling and Optimization of the LCD Optical Performance (Wiley, London, 2015)
  21. S.P. Palto. J. Experiment. Theor. Phys., 92 (4), 552 (2001). DOI: 10.1134/1.1371338
  22. O.A. Golovanov, G.S. Makeeva, A.B. Rinkevich. Tech. Phys., 61 (2), 274 (2016). DOI: 10.1134/S1063784216020122

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru