Danilov A.A.
1, Anikin A. A.
1,2, Glazov D.
3,1, Korzinin E. Y.
2, Kotov A. A.
1, Solovyev D. A.
4,11Faculty of Physics, St. Petersburg State University, Peterhof, St. Petersburg, Russia
2D.I. Mendeleev Institute for Metrology, St. Petersburg, Russia
3ITMO University, St. Petersburg, Russia
4Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
Email: st063038@student.spbu.ru, alexey.anikin.spbu@gmail.com, glazov.d.a@gmail.com, artem.a.kotov@gmail.com, d.solovyev@spbu.ru
In the present paper, a completely relativistic approach is used to obtain adiabatic potential curves for molecular terms within the A-DKB method. Solving the two-center Dirac equation, two compounds are described: one-electron homonuclear H-p and one-electron heteronuclear He+ - p (quasi-)molecular ions. In the framework of the Born-Oppenheimer approximation, the electron binding energies (ground and several first excited states) in a wide range of inter-nuclear distances have been obtained. Using the relativistic approach, energy splittings, crossings, and identification of energy terms are discussed. The results are compared with those characterized within the nonrelativistic approach, widely covered in the literature. Keywords: Dirac equation, relativistic effects, potential curves, quasimolecules, A-DKB method.
- L.D. Landau, E.M. Lifshits. Kvantovaya Mekhanika (nerelyativistskaya teoriya) (M.: Nauka, 1963) (in Russian)
- A.S. Davydov. Kvantovaya mekhanika, Nauka, M., 1973 (in Russian)
- L. Pauling. Chemical Reviews 5, 173 (1928)
- R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H.D. Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, P. Zaccaria. Nuclear Fussion 49 045006 (2009)
- I.B. Abdurakhmanov, S.U. Alladustov, S.U. J.J. Biley, A.S. Kadyrov, I. Bray. Plasma Physics and Controlled Fusion 60, 095009 (2018)
- A.C.K. Leung, T. Kirchner. The European Physical Journal D 73, 246 (2019)
- T. Kereselidze, I. Noselidze, J.F. Ogilvie. Monthly Notices of the Royal Astronomical Society, 501, 1160 (2020)
- S. Schiller, D. Bakalov, V.I. Korobov. 113, 023004 (2019)
- J.-P. Karr, L. Hilico, J.C.J. koelemeij, V.I. Korobov. Phys. Rev. A 94, 050501 (2016)
- V. Korobov, T. Tsogbayar. Journal of Physics B: Atomic, Molecular and Optical Physics 40, 2661 (2007)
- T. Tsogbayar, V. Korobov. The Journal of Chemical Physics 125, 024308 (2006). https://doi.org/10.1063/1.2209694
- V.I. Korobov, J.-P. Karr, M. Haidar, Z.X. Zhong. Phys. Rev. A 102, 022804 (2020)
- D. Bakalov, V.I. Korobov, S. Schiller. Phys. Rev. Lett. 97, 243001 (2006)
- V.I. Korobov, L. Hilico, J.-P. Karr. Phys. Rev. Lett. 112, 103003 (2014)
- V.I. Korobov, L. Hilico, J.-P. Karr. Phys. Rev. Lett. 118, 233001 (2017)
- L. Yang, D. Heimemann, D. Kolb. Chem. Phys. Lett. 178, 213 (1991)
- O. Kullie, D. Kobl. The European Physical Journal D ---Atomic, Molecular, Optical and Plasma Physics bf 17, 167 (2001)
- A. Ishikawa, H. Nadashima, H. Nakatsuji. Journal of Chemical Phusics 128, 124103 (2008)
- S.R. McConnell, A.N. Artimyev, M. Mai, A. Surzhykov. Phis. Rev. A 86, 052705 (2012)
- I.I. Tupitsyn, D.V. Mironova. Opt. Spectrosc., 117, 351 (2014) (in Russian)
- D. Mironova, I. Tupitsyn, V. Shabaev, G. Plunien. Chemical Phisics 449, 10 (2015)
- O. Kullie and S. Schiller. Phis. Rev. A 105 052801 (2022)
- H.D. Nogueira, J.-P. Karr. Phys. Rev. A 107, 0428817 (2023)
- W.R. Johnson, S.A. Blundell, J. Sapirstein. Phys. Rev. A 37, 307 (1988)
- V.M. Shabaev, I.I. Tupitsyn, V.A. Yrokhin, G. Plunien, G. Soff. 93, 103405 (2004)
- E.B. Bozenbaum, D.A. Glazov, V.M. Shabaev, K.E. Sosbova, D.A. Telnov. Phys. Rev. A 89, 012514 (2014)
- A.A. Kotov, D.A. Glasov, A.V. Malyshev, A.V. Vladimirova, V.M. Shabaev, G. Plunien. X-Ray Spectrometry. 49, 110 (2020)
- A.A. Kotov, D.A. Glazov, V.M. Shabaev, G. Plunien. Atoms 9 (2021), 10.3390/atoms9030044
- E. Fermi, E. Teller. Phys. Rev. 72, 399 (1947)
- E. Fermi, Molekuly i kristally (Tbilisi State University, 2013)
- J. Waltev, H. Eyring, G. Kimball, J. Walter. Quantum Chemistry (J. Wiley and Sons, 1944)
- D. Solovyev, A. Anikin, A. Danilov, D. Glazov, A. Kotov. Light one-ekectrin quasimolecular ions within the finite-basis-set method for the two-center dirac equation, (2023), arXiv:2310.04057 [physics.atom-ph].
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.