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Adiabatic potential curves of H-p and He+
− p ions: relativistic treatment

© A. Danilov 1, A. Anikin 1,2, D. Glazov 1,3, E. Korzinin 2, A. Kotov 1, D. Solovyev 1,4

1 St. Petersburg State University,

199034 St. Petersburg, Russia
2 D.I. Mendeleev Institute for Metrology, St. Petersburg, Russia
3 ITMO University, St. Petersburg, Russia
4 Petersburg Nuclear Physics Institute named after B.P. Konstantinov of National Research Center

”
Kurchatov Institute“,

188300 Gatchina, Leningrad region, Russia

e-mail: st063038@student.spbu.ru

Received October 18, 2023

Revised November 09, 2023

Accepted November 24, 2023

In the present paper, a completely relativistic approach is used to obtain adiabatic potential curves for molecular

terms within the A-DKB method. Solving the two-center Dirac equation, two compounds are described: one-

electron homonuclear H− p and one-electron heteronuclear He+
− p (quasi-)molecular ions. In the framework

of the Born-Oppenheimer approximation, the electron binding energies (ground and several first excited states)
in a wide range of inter-nuclear distances have been obtained. Using the relativistic approach, energy splittings,

crossings, and identification of energy terms are discussed. The results are compared with those characterized

within the nonrelativistic approach, widely covered in the literature.
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1. Introduction

Diatomic molecules have been the object of study since

the emergence of quantum mechanics (QM) [1,2]. Interest
in such systems was stimulated by the necessity to describe

bound states of electrons as part of quantum theory and

to develop a theory for solving the many-body problem.

At the dawn of the development of quantum theory, the

determination, for example, of the equilibrium internuclear

distance in light molecular systems served as a test of the

theory [3]. Since then, the continuous development of the

theory, combined with increasing accuracy of measurements

of molecular systems, has found many applications in vari-

ous fields of physics and chemistry. For example, in plasma

physics, the description of the process of proton scattering

on atomic hydrogen is of particular interest [4–6]. In lots

of astrophysical problems, light molecular ions (H+
2 and

He+−p) are studied, and collisional processes leading to

the formation of atomic hydrogen in the early Universe are

reviewed [7]. Recently, the molecular hydrogen ion and its

isotopes have been proposed to be used as molecular optical

clocks based on theoretical and experimental advances [8].
As a consequence, it has been shown that such systems

can be used to accurately determine fundamental physical

constants such as the electron-proton mass ratio and the

proton charge radius [9].

Single-electron binuclear ions, along with the helium

atom, are the simplest case of the many-body problem. The

traditional way to describe such systems is to use numerical

methods. One widely used method is to use a nonrelativistic

approach. The Schrödinger equation is solved with the

aim of accurately calculating the electron bond energy, and

then various relativistic and radiation-induced corrections

are taken into account, calculated within the framework

of nonrelativistic quantum electrodynamics (NRQED). The
most outstanding results were obtained using the variational

principle [10–15], as part of which corrections were cal-

culated up to the orders mα6 and mα6 (m/M) (m and M
electron and nucleus masses, respectively, α fine structure

constant). An alternative approach is to solve the Dirac

equation with a two-center potential. A widely used method

is the expansion of Dirac wave functions in partial waves.

As part of this approach, the energies of low-lying states

of the molecular ion H+
2 were calculated with an accuracy

of the order of 10−13−10−14 [16–20] and higher for the

ground state [21]. The results obtained by other methods

are presented in [22,23].

In this work, a different fully relativistic approach

is used to study the single-electron ionic compounds

hydrogen-proton (H− p) and singly ionized helium-proton

(He+ − p). As part of the Born − Oppenheimer approx-

imation, the Dirac equation with a two-center potential

is solved using the expansion of the wave function in

B -splines [24]. The dual-kinetic balance (DKB) method

built on B -splines was extended to the case of systems

with axial symmetry (A-DKB) [25] in the work [26].
Recently, a theoretical analysis of heavy single-electron

quasi-molecular compounds has been carried out using the

A-DKB approach [27,28].

We apply the A-DKB method to calculate the ground

and first few excited quasi-molecular terms of the light

ions H− p and He+ − p. A detailed analysis of adiabatic
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potential surfaces is carried out based on the calculation

results. In particular, the behavior of the ground and

excited quasi-molecular terms depending on the internuclear

distance is considered and their classification is carried

out as part of a strict relativistic approach. Typically,

the identification of the energy states of molecules, along

with correlation diagrams, is carried out in a nonrelativistic

approximation, which leads to the necessity to adapt it to

the relativistic case. The presence of a large number of

(pseudo)intersections, as well as fine splitting, complicates

the classification of adiabatic potential surfaces of a bound

electron. Therefore, we will directly focus on the issue of

direct relativistic definition of quasi-molecular terms.

2. Method and results

A-DKB method

In the Born −Oppenheimer approximation, the steady

Dirac equation for an electron in a two-center potential has

the form:

[αp + β + V (r)]9n(r) = En9n(r), (1)

where r — electron radius vector, p — momentum operator,

α and β are Dirac matrices. The two-center potential is

given by:

V (r) = V1(|r − R1|) + V2(|r − R2|)

≡ −
αZ1

|r− R1|
−

αZ2

|r− R2|
, (2)

where V1,2(r) is a Coulomb potential corresponding to

nuclei with charges Z1, Z2 at the location of the electron,

specified by the radius vector r. The origin is chosen on

the quasi-molecule axis z between two nuclei so that the

vectors R1,2 specify the coordinates of the nuclei.

For systems with axial symmetry, the wave function can

be written as

9 (r, θ, ϕ) =
1

r















G1 (r, θ) ei(m j−1/2)ϕ

G2 (r, θ) ei(m j +1/2)ϕ

iF1 (r, θ) ei(m j−1/2)ϕ

iF2 (r, θ) ei(m j+1/2)ϕ















where m j — projection onto the axis z of the total angular

momentum of the electron j . The components G1,2 (r, θ)
and F1,2 (r, θ) of the Dirac function can be represented as

an expansion:

φ (r, θ) ∼=
4

∑

u=1

Nr
∑

ir =1

Nθ
∑

iθ=1

Cu
i r iθ3B i r (r)Qiθ (θ)eu. (4)

Here the set {B i r (r)}
Nr

i r =1 is represented byB -splines, the

angle dependence θ is given by the set of Legendre

polynomials {Qiθ (θ)}
Nθ

iθ=1, {eu}
4
u=1 — four-component basis

vectors. The matrix 3 imposes the DKB condition on the

basis set [25]. Further calculations consist of numerical

calculations, for example, in recent works [22,23] an

accuracy of 27− 32 significant figures for the main term

was achieved.

To calculate the energy of a bound electron, an approach

is used that is completely similar to the nonrelativistic one,

i. e. numerical calculations are carried out for a specific fixed

internuclear distance in the approximation of infinitely heavy

nuclei. It is worth noting that the solution of the two-center

Dirac equation automatically takes into account relativistic

effects. Meanwhile (even if having achieved outstanding

results), non-relativistic methods necessarily include the

calculation of the corresponding relativistic corrections in

the required order.

In the general case, the molecular energy state of an

electron is characterized by the projection of the total

angular momentum onto the axis of the molecule. Being

a conserved quantity for systems with axial symmetry,

such a description leads to degeneracy in sign m j . For

homonuclear systems in which two nuclei are identical,

there is an additional quantum number g (gerade) for even

states and u (ungerade) for odd states, expressing symmetry

with respect to reflection in a plane perpendicular to the axis

of the molecule. In addition, a specific energy state of an

electron can be considered in the limit of zero internuclear

distance, i.e. in the limit of a
”
united “ atom. Then the

”
coherent “ nuclear charge is given by the sum of Z1 and

Z2 and the usual atomic notation for the energy state can

be used: nl j , where n — principal quantum number, l —
orbital momentum, and j — total angular momentum of

the electron. Thus, the electron molecular term can be

determined by the formula nl jλpm j [29], where λ — the

projection of the orbital momentum of the electron onto the

axis of the molecule, and p denotes the parity of the state

when rearranging nuclei (only for homonuclear systems).
Similar notation can be introduced by reviewing the limit of

infinite internuclear distance, when the electron is localized

on only one of the nuclei. In this work we adhere to the

notation corresponding to the
”
united“ atom.

Homonuclear quasi-molecular ion H − p

As part of the A-DKB method, the energies of the

homonuclear hydrogen-proton compound, H− p, arise as

a result of the numerical solution of the two-center Dirac

equation (1), with the expansion of the wave function given,

for example, by expression (4). According to the A-DKB

method [25,26], the entire Dirac energy spectrum (including
the negative and positive continuum) is reproduced as a

discrete set of states with a given angular momentum

projection, the lowest of which correspond to real discrete

quasi-molecular terms. In the nonrelativistic case, the state

of the electron in the molecule is determined by the absolute

value of the projection of its orbital angular momentum onto

the axis of the molecule λ. Taking into account the electron
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spin results in a fine splitting of the molecular term into two

states λ + 1/2 and λ − 1/2 [30].

Further, we will review the adiabatic potential surfaces

of the ground and first four excited quasi-molecular states.

Since the curves for excited states can intersect each other

and (or) be close in energy, states that lie higher should also

be reviewed, including states with large projection values

m j . Figure 1 shows adiabatic potential curves obtained by

the A-DKB method.

Determining the ground state, 1s1/2σg (m j = −1/2),
does not reveal any difficulties. In particular, in the united

atom limit, this adiabatic curve transitions to the ground

state of an ion with a core consisting of two protons, 2He+.

For it, the energy in the nonrelativistic limit is equal to

−2 atomic units (hereinafter a.u.). It should be noted

that the parity of states with respect to permutation of

nuclei can also be calculated within the A-DKB approach,

allowing for the identification of terms. However, on the

scale of Fig. 1, the curves of different fine sublevels are

indistinguishable, and possible intersections or splitting of

terms require separate analysis. To do this, let us review the

region of small distances, where the quasi-molecular terms

are degenerate in the nonrelativistic limit. For states with

n = 2 in the atomic ion 2He+, Fig. 2 shows the adiabatic

surfaces of the first four excited levels depending on the

internuclear distance in the region of several thousand Fermi

(the region R ≤ 600 fm is inserted).

According to Fig. 2, the splitting of the state with

nonrelativistic energy of the united atom −0.5 a.u. starts

from the internuclear distance ≈ 1000 fm. The inset in

Fig. 2, corresponding to smaller internuclear distances,

shows a fine level splitting. This splitting is well

known and arises in the relativistic Dirac theory for

a bound atomic state. Numerical calculation results

for the states 2p1/2σu(m j = −1/2), 2s1/2σg(m j = −1/2),

0

–0.5

–1.0

–1.5

–2.0
0 2 4 6 8 10

Figure 1. Adiabatic potential surfaces of the quasi-molecular

ion H — p for the first seven states with m j = −1/2 (solid lines)
and the first two states with m j = −3/2 (dashed lines). Energy is

plotted along the ordinate axis, and internuclear distance is plotted

along the abscissa axis. All values are given in atomic units.

0 1000 2000 3000 4000 5000

–0.5

(2p , 2p )
3/2 1/2

2p
3/2

g

u

u

u

0 200 400 600

2p σ (m  = –1/2)1/2 u j
2s σ (m  = –1/2)1/2 g j

2p π (m  = –3/2)3/2 u j
2p π (m  = –1/2)3/2 u j

Figure 2. Adiabatic potential surfaces of the first four excited

states of the H+
2 ion in the region of small internuclear distances

(fm). Energy is plotted along the ordinate axis, and internuclear

distance is plotted along the abscissa axis. The energies are given

in atomic units.

2p3/2πu(m j = −1/2) and 2p3/2πu(m j = −3/2) are given in

Table 1. Based on the obtained values and Dirac theory, the

corresponding states can be unambiguously identified.

In particular, the states 2s1/2 and 2p1/2 are degenerate at

R → 0, their splitting in the lowest order is determined by

the effects of quantum electrodynamics (Lamb shift). Then,
according to Dirac theory, the upper states are separated

by an interval of fine structure and correspond to the

atomic level 2p3/2. The two emerging terms correspond

to different projections of the total angular momentum: the

upper one is m j = −3/2 and the lower one is m j = −1/2.

Both are quasi-molecular π− terms and can therefore be

defined as 2p3/2πu(m j = −3/2) for the upper curve and

2p3/2πu(m j = −1/2) for the lower one.

Finally, the inset in Fig. 2 clearly demonstrates the inter-

section of the quasi-molecular terms 2p3/2πu(m j = −3/2)
and 2p3/2πu(m j = −1/2) with one of the terms emanating

from 2s1/2, 2p1/2, in the vicinity of 450 fm. Meanwhile,

it can be assumed that in a more accurate calculation, this

intersection could represent a splitting of terms. According

to [1.31] the intersection of adiabatic curves is possible

only for terms with different symmetries. Symmetry, in

particular, is determined by the rearrangement of nuclei.

By calculating the corresponding parity of states, the quasi-

molecular terms are defined as follows: the curve going

up is 2s1/2σg(m j = −1/2) and the curve going down is

2p1/2σu(m j = −1/2). Therefore, R ≈ 450 fm represents the

intersection point. The intersections/splitting of terms in

Fig. 1 are analyzed similarly for other distances. Thus,
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Table 1. Bond energies of the first four excited states in the quasi-molecular ion H — p at small internuclear distances. Energy values

are given in a.u., distances are given in fm

State R, fm

10 100 300

2p1/2σu(m j = −1/2) −0.500033286 −0.500033287 −0.500033375

2s1/2σg(m j = −1/2) −0.500033274 −0.500032098 −0.500022679

2p3/2πu(m j = −1/2) −0.500006658 −0.500006774 −0.500007638

2p3/2πu(m j = −3/2) −0.500006655 −0.500006538 −0.500005585

0 2 4 6 8 10

–0.5

2p π (m  = –3/2)3/2 u j

2p π (m  = –1/2)3/2 u j

2p σ (m  = –1/2)1/2 u j

2s σ (m  = –1/2)1/2 g j

1s σ (m  = –1/2)1/2 g j

–1.0

–1.5

–2.0

Figure 3. Adiabatic potential curves of the ground and first four

excited states of the quasi-molecular ion H —p. Energy is plotted

along the ordinate axis, and internuclear distance is plotted along

the abscissa axis. All values are given in atomic units.

by reviewing the limit of small internuclear distances, it

is possible to identify all quasi-molecular terms. The final

picture of adiabatic potential surfaces is presented in Fig. 3.

Heteronuclear quasi-molecular ion He+
− p

In this part of the work, a detailed analysis of the

classification of quasi-molecular terms is carried out within

the framework of a completely relativistic approach using

the example of a compound of singly ionized helium with a

proton He+ − p In this case, the picture becomes somewhat

different due to the lack of parity of states established by the

permutation symmetries of nuclei. Therefore, to determine

the intersection or splitting of quasi-molecular terms, we

will use the condition of continuity of adiabatic potential

surfaces.

As before, the adiabatic potentials of the ground and first

excited states in the compound He+ − p can initially be

classified only as sets of states with different projections of

the total angular momentum m j . The diagram of quasi-

molecular terms is presented in Fig. 4.

The lower curve in Fig. 4, as before, represents the ground

quasi-molecular state of 1s1/2σ (m j = −1/2). In the limit of

zero internuclear distance (united atom), this term goes into

the ground state of a one-electron ion with a lithium-like

nucleus. The following four above curves are degenerate

in the limit of zero internuclear distance and represent, in

the nonrelativistic approximation, the state of a united atom

with n = 2, etc. for subsequent states.

To classify the first four excited quasi-molecular terms,

we consider the limit of small internuclear distances. The

corresponding graph for the R ∈ [0, 5000] fm distances is

presented in Fig. 5, which also shows the R ≤ 600 fm region.

The numerical values of quasi-molecular energies

depending on internuclear distances for the

states 2p1/2σ (m j = −1/2), 2s1/2σ (m j = −1/2),

2p3/2π(m j = −1/2) and 2p3/2π(m j = −3/2) are given

in Table 2. The latter allow to identify the states of the

ion in the limit of a united atom. In particular, in the

limit R → 0 the degenerate states 2s1/2 and 2p1/2 are

visible, which form the terms 2s1/2σ (m j = −1/2) and

2p1/2σ (m j = −1/2) , respectively. The two incumbent

states correspond to the united atom state 2p3/2, which

0

–1

–2

–3

–4

–5
0 2 4 6 8 10

Figure 4. Adiabatic potential curves obtained by numerical

calculation using the A-DKB method for the first seven states with

m j = −1/2 (solid lines) and the first two states with m j = −3/2

(dashed lines) in the one-electron quasi-molecular ion He+
− p.

Energy is plotted along the ordinate axis, and internuclear distance

is plotted along the abscissa axis. All values are given in atomic

units.
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Table 2. Bond energies of the first four excited states in the quasi-molecular ion H — p at small internuclear distances. Energy values

are given in atomic units, while internuclear distances are in fm.

State R, fm

10 100 300

2p1/2σ (m j = −1/2) −1.125168533 −1.125168537 −1.125168886

2s1/2σ (m j = −1/2) −1.125168474 −1.125163183 −1.125120996

2p3/2π(m j = −1/2) −1.125033706 −1.125034232 −1.125038165

2p3/2π(m j = −3/2) −1.125033695 −1.125033164 −1.125028878

0 1000 2000 3000 4000 5000

–1.125

2p σ (m  = –1/2)1/2 j
2s σ (m  = –1/2)1/2 j

2p π (m  = –3/2)3/2 j
2p π (m  = –1/2)3/2 j

(2p , 2p )
3/2 1/2

2p
3/2

0 200 400 600

Figure 5. Adiabatic potential surfaces for the first four excited

states of the He+
− p ion in the region of small internuclear

distances. Energy is plotted along the ordinate axis (in atomic

units), and internuclear distance is plotted along the abscissa axis

(in fm).

splits into two components with m j = −1/2 (lower) and

m j = −3/2 (upper).

According to the inset in Fig. 5, there is a point at which it

is required to determine whether the terms intersect or split.

This point, as in the case reviewed in the previous section,

is located in the vicinity of 450 fm. We also discovered

by corresponding numerical calculations that this point is

practically independent of the nuclei charge. In contrast to

the case of a homonuclear quasi-molecule, identification of

the intersection/splitting of terms in this case can be carried

out only using the condition of continuity of adiabatic

curves. Therefore, as part of the A-DKB method, tracking

the potential minimum of the curve, the first derivative of

the adiabatic potentials was numerically calculated. This

kind of approach is valid for both hetero- and homonuclear

systems, and was also used for the H−p ion. According to

the continuity condition, the quasi-molecular terms emerg-

ing from the two lower degenerate states are defined as

2p1/2σ (m j = −1/2) and2s1/2σ (m j = −1/2). These states

in the united atom limit correspond to the atomic levels

2s1/2 and 2p1/2. Further, the state 2p3/2, separated from

them by a fine structure interval in the limit R → 0, splits

into quasi-molecular terms 2p3/2π(m j = −1/2) (downward

curve) and 2p3/2π(m j = −3/2) (upward curve). This kind
of picture qualitatively repeats the case of the quasimolecule

H− p, reviewed previously.

Carrying out a similar analysis for intersection/splitting

points at large internuclear distances, Fig. 4, we obtain the

final results for the adiabatic potential curves presented in

Fig. 6.

3. Conclusion

In this work, a detailed analysis of adiabatic potential

surfaces obtained as part of completely relativistic cal-

culations was carried out. Using the A-DCB method,

two examples were considered, the homonuclear quasi-

molecular ion H− p and the heteronuclear quasi-molecular

ion He+ − p. Using numerical calculations, adiabatic

potential curves were constructed for the ground state and

0 2 4 6 8 10

–2

2p π (m  = –3/2)3/2 j

2p π (m  = –1/2)3/2 j

2p σ (m  = –1/2)1/2 j

2s σ (m  = –1/2)1/2 j

1s σ (m  = –1/2)1/2 j

–3

–4

–5

–1

0

Figure 6. The adiabatic potential surfaces of the ground and first

four excited states of quasi-molecular ion He+ — p. Energy is

plotted along the ordinate axis, and internuclear distance is plotted

along the abscissa axis. All values are given in atomic units.
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the first few excited states. Quasi-molecular terms of

compounds H− p and He+ − p are presented in Figs. 1

and 4, correspondingly [32].

Precise identification of terms is required since adiabatic

potential curves have obvious intersections. Although the

classification of quasi-molecular terms is well represented

within the nonrelativistic approach [1,31], additional com-

plexity arises in the fully relativistic picture. This is due

to the presence of states that are non-degenerate in Dirac

theory and correspond to different total angular momenta

of the electron. Identification of quasi-molecular terms

in the compounds H — p and He+ — p was carried

out as follows. First, the limit R → 0 was reviewed,

in which the system under study can be described as

a united one-electron ion (as an alternative, the limit of

infinite internuclear distance can be reviewed). As part

of Dirac theory, the corresponding energy states can be

unambiguously identified taking into account fine splitting.

Then, introducing standard notations for molecular terms,

the points of intersection/splitting of adiabatic potential

curves were analyzed.

In the case of a homonuclear quasimolecule, intersec-

tion/splitting is characterized, in particular, by the parity of

states determined by the rearrangement of nuclei in a plane

perpendicular to the axis of the molecule. This parity of

quasi-molecular terms is calculated as part of the A-DKB

approach. However, for heteronuclear compounds this sym-

metry is absent. Thus, to interpret the intersection/splitting

in this kind of systems, for example in He+ — p, we applied
the condition of continuity of adiabatic potential surfaces.

By tracking the values of the first derivative of an adiabatic

curve, it can be determined whether there is an intersection

or splitting of terms by finding possible extrema or
”
jumps

“ in the values.

The combination in this work of the analysis of adiabatic

curves at small internuclear distances with the study of

intersection/splitting points made it possible to determine

the main and first four (as an example) excited quasi-

molecular terms in both homo- and heteronuclear com-

pounds H — p, He+ — p. Corresponding results are shown

in Figures 3 and 6. The presented analysis is not limited to

one-electron light quasi-molecular ions and can obviously

be applied to heavier quasi-molecular compounds.
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