Direct calculation of transition matrix elements in relativistic coupled cluster theory
Oleynichenko A. V. 1,2, Zaitsevskii A.1,3, Kondratyev S. V.3, Eliav E.4
1Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Lomonosov Moscow State University, Moscow, Russia
4Tel-Aviv University, Tel-Aviv, Israel
Email: oleynichenko_av@pnpi.nrcki.ru, zaitsevskii_av@pnpi.nrcki.ru, icewolfer193@gmail.com, ephraim@tauex.tau.ac.il

PDF
A procedure for calculating transition matrix elements of one-electron property operators in many-electron systems within the relativistic Fock space coupled cluster theory is implemented. The procedure implies constructing an effective property operator accurate up to the second order in cluster amplitudes and ensures connectivity of its diagrammatic representation and exact size-consistency. The results of pilot calculations of electronic transition dipole moments between low-lying states and excited-state radiative lifetimes for Sr and Ra atoms are presented. Keywords: Relativistic coupled cluster theory, transition dipole moments, radiative lifetimes, generalized relativistic pseudopotentials.
  1. R.F. Garcia Ruiz, R. Berger, J. Billowes, C.L. Binnersley, M.L. Bissell, A.A. Breier, A.J. Brinson, K. Chrysalidis, T.E. Cocolios, B. Cooper, K.T. Flanagan, T.F. Giesen, R.P. de Groote, S. Franchoo, F.P. Gustafsson, T. Isaev, A. Koszorus, G. Neyens, H.A. Perrett, C.M. Ricketts, S. Rothe, L. Schweikhard, A.R. Vernon, K.D.A. Wendt, F. Wienholtz, S.G. Wilkins, X.F. Yang. Nature, 581, 396 (2019). DOI: 10.1038/s41586-020-2299-4
  2. S.M. Udrescu, A.J. Brinson, R.F. Garcia Ruiz, K. Gaul, R. Berger, J. Billowes, C.L. Binnersley, M.L. Bissell, A.A. Breier, K. Chrysalidis, T.E. Cocolios, B.S. Cooper, K.T. Flanagan, T.F. Giesen, R.P. de Groote, S. Franchoo, F.P. Gustafsson, T.A. Isaev, A. Koszorus, G. Neyens, H.A. Perrett, C.M. Ricketts, S. Rothe, A.R. Vernon, K.D.A. Wendt, F. Wienholtz, S.G. Wilkins, X.F. Yang. Phys. Rev. Lett., 127, 033001 (2021). DOI: 10.1103/PhysRevLett.127.033001
  3. M.G. Kozlov, L.N. Labzowsky. J. Phys. B: At. Mol. Opt. Phys., 28, 1933 (1995). DOI: 10.1088/0953-4075/28/10/008
  4. M.S. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark. Rev. Mod. Phys., 90, 025008 (2018), DOI: 10.1103/RevModPhys.90.025008
  5. L.V. Skripnikov, N.S. Mosyagin, A.V. Titov, V.V. Flambaum, Phys. Chem. Chem. Phys., 22, 18374 (2020). DOI: 10.1039/D0CP01989E
  6. E. Eliav, A. Borschevsky, A. Zaitsevskii, A.V. Oleynichenko, U. Kaldor. Relativistic Fock-space coupled cluster method: theory and recent applications, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, Amsterdam, 2022). DOI: 10.1016/B978-0-12-821978-2.00042-8
  7. K.R. Shamasundar, S. Asokan, S. Pal. J. Chem. Phys., 120, 6381 (2004). DOI: 10.1063/1.1652436
  8. J. Gupta, N. Vaval, S. Pal. J. Chem. Phys., 139, 074108 (2013). DOI: 10.1063/1.4817943
  9. D. Bhattacharya, N. Vaval, S. Pal. J. Chem. Phys., 138, 094108 (2013). DOI: 10.1063/1.4793277
  10. A.V. Zaitsevskii, L.V. Skripnikov, A.V. Kudrin, A.V. Oleinichenko, E. Eliav, A.V. Stolyarov. Opt. Spectrosc., 124, 451 (2018). DOI: 10.1134/s0030400x18040215
  11. A.V. Oleynichenko, L. Skripnikov, A. Zaitsevskii, E. Eliav, V.M. Shabaev. Chem. Phys. Lett.. 756, 137825 (2020). DOI: 10.1016/j.cplett.2020.137825
  12. A. Zaitsevskii, A.V. Oleynichenko, E. Eliav. Symmetry, 12, 1845 (2020). DOI: 10.3390/sym12111845
  13. A. Zaitsevskii, A.P. Pychtchev. Eur. Phys. J. D, 4, 303 (1998). DOI: 10.1007/s100530050213
  14. S.A. Blundell, W.R. Johnson, J. Sapirstein, Phys. Rev. A, 43, 3407 (1991). DOI: 10.1103/physreva.43.3407
  15. M.S. Safronova, W.R. Johnson, A. Derevianko, Phys. Rev. A 60, 4476 (1999). DOI: 10.1103/PhysRevA.60.4476
  16. G. Gopakumar, H. Merlitz, R.K. Chaudhuri, B.P. Das, U.S. Mahapatra, D. Mukherjee. Phys. Rev. A, 66, 032505 (2002). DOI: 10.1103/physreva.66.032505
  17. B.K. Sahoo, S. Majumder, H. Merlitz, R. Chaudhuri, B.P. Das, D. Mukherjee. J. Phys. B: At. Mol. Opt. Phys., 39, 355 (2005). DOI: 10.1088/0953-4075/39/2/010
  18. S.G. Porsev, A. Derevianko. Phys. Rev. A, 73, 012501 (2006). DOI: 10.1103/physreva.73.012501
  19. U.I. Safronova, M.S. Safronova, W.R. Johnson. Phys. Rev. A, 95, 042507 (2017). DOI: 10.1103/physreva.95.042507
  20. H.B. Tran Tan, A. Derevianko. Phys. Rev. A, 107, 042809 (2023). DOI: 10.1103/PhysRevA.107.042809
  21. A.V. Zaitsevskii, A.V. Oleynichenko, E. Eliav. Mol. Phys., e2236246 (2023). DOI: 10.1080/00268976.2023.2236246
  22. A. Zaitsevskii, N.S. Mosyagin, A.V. Oleynichenko, E. Eliav. Int. J. Quantum Chem. 123, e27077 (2022). DOI: 10.1002/qua.27077
  23. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A, 61, 062509 (2000). DOI: 10.1103/physreva.61.062509
  24. P. Mandal, A. Sen, M. Mukherjee. Hyperfine Interact., 196, 261 (2010). DOI: 10.1007/s10751-010-0169-4
  25. M. Fan, C.A. Holliman, A.L. Wang, A.M. Jayich. Phys. Rev. Lett. 122, 223001 (2019). DOI: 10.1103/PhysRevLett.122.223001
  26. U. Kaldor. Theor. Chim. Acta, 80, 427 (1991). DOI: 10.1007/bf01119664
  27. L. Visscher, E. Eliav, U. Kaldor. J. Chem. Phys., 115, 9720 (2001). DOI: 10.1063/1.1415746
  28. M. Musia, A. Perera, R.J. Bartlett. J. Chem. Phys. 134, 114108 (2011). DOI: 10.1063/1.3567115
  29. V. Hurtubise, K.F. Freed. in Advances in Chemical Physics, Vol. 83 (John Wiley \& Sons, 1993) pp. 465-541. DOI: 10.1002/9780470141410.ch6
  30. A.V. Oleynichenko, A. Zaitsevskii, E. Eliav. in Supercomputing, Vol. 1331, edited by V. Voevodin and S. Sobolev (Springer International Publishing, Cham, 2020) pp. 375-386. DOI: 10.1007/978-3-030-64616-5_33
  31. A.V. Titov, N.S. Mosyagin. Int. J. Quantum Chem., 71, 359 (1999). DOI: 10.1002/(SICI)1097- 461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
  32. N.S. Mosyagin, A.N. Petrov, A.V. Titov, I.I. Tupitsyn, in Recent Advances in the Theory of Chemical and Physical Systems, Vol. 15 (Kluwer Academic Publishers, 2006) pp. 229-251. DOI: 10.1007/1-4020-4528-x_11
  33. N.S. Mosyagin, A.V. Zaitsevskii, A.V. Titov. Int. J. Quantum Chem., 120, e26076 (2020). DOI: 10.1002/qua.26076
  34. A.V. Oleynichenko, A. Zaitsevskii, N.S. Mosyagin, A.N. Petrov, E. Eliav, A.V. Titov. Symmetry 15, 197 (2023). DOI: 10.3390/sym15010197
  35. B.O. Roos, V. Veryazov, P.-O. Widmark. Theor. Chem. Acc., 111, 345 (2003). DOI: 10.1007/s00214-003-0537-0
  36. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC19 (2019), written by A.S.P. Gomes, T. Saue, L. Visscher, H.J.Aa. Jensen, R. Bast, with contributions from I.A. Aucar, V. Bakken, K.G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, L. Halbert, E.D. Hedegaard, T. Helgaker, J. Henriksson, M. Ilias, Ch.R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J.K. Laerdahl, C.V. Larsen, Y.S. Lee, H.S. Nataraj, M.K. Nayak, P. Norman, M. Olejniczak, J. Olsen, J.M.H. Olsen, Y.C. Park, J.K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, A.J. Thorvaldsen, J. Thyssen, J. van Stralen, M.L. Vidal, S. Villaume, O. Visser, T. Winther, S. Yamamoto (see http://diracprogram.org). (accessed on 26 April 2023)
  37. T. Saue, R. Bast, A.S.P. Gomes, H.J.A. Jensen, L. Visscher, I.A. Aucar, R. Di Remigio, K.G. Dyall, E. Eliav, E. Fasshauer, T. Fleig, L. Halbert, E.D. Hedegard, B. Helmich-Paris, M. Iliavs, C.R. Jacob, S. Knecht, J.K. Laerdahl, M.L. Vidal, M.K. Nayak, M. Olejniczak, J.M.H. Olsen, M. Pernpointner, B. Senjean, A. Shee, A. Sunaga, J.N.P. van Stralen. J. Chem. Phys., 152, 204104 (2020). DOI: 10.1063/5.0004844
  38. J.E. Sansonetti, W.C. Martin. J. Phys. Chem. Ref. Data, 34, 1559 (2005). DOI: 10.1063/1.1800011
  39. M.S. Safronova, M.G. Kozlov, W.R. Johnson, D. Jiang. Phys. Rev. A, 80, 012516 (2009). DOI: 10.1103/physreva.80.012516
  40. M.S. Safronova, S.G. Porsev, U.I. Safronova, M.G. Kozlov, C.W. Clark. Phys. Rev. A, 87, 012509 (2013). DOI: 10.1103/physreva.87.012509
  41. V.A. Dzuba, J.S.M. Ginges. Phys. Rev. A, 73, 032503 (2006). DOI: 10.1103/physreva.73.032503
  42. R. Drozdowski, M. Ignaciuk, J. Kwela, J. Heldt. Z. Phys. D Atom Mol. Cl., 41, 125 (1997). DOI: 10.1007/s004600050300
  43. N.D. Scielzo, J.R. Guest, E.C. Schulte, I. Ahmad, K. Bailey, D.L. Bowers, R.J. Holt, Z.-T. Lu, T.P. O'Connor, D.H. Potterveld. Phys. Rev. A, 73, (2006). DOI: 10.1103/physreva.73.010501
  44. T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew, J. Ye. Nat. Commun., 6, 6896 (2015). DOI: 10.1038/ncomms7896
  45. J.R. Guest, N.D. Scielzo, I. Ahmad, K. Bailey, J.P. Greene, R.J. Holt, Z.-T. Lu, T.P. O'Connor, D.H. Potterveld. Phys. Rev. Lett., 98, 093001 (2007). DOI: 10.1103/PhysRevLett.98.093001
  46. D. Husain, G. Roberts. Chem. Phys., 127, 203 (1988). DOI: 10.1016/0301-0104(88)87119-2
  47. W.L. Trimble, I.A. Sulai, I. Ahmad, K. Bailey, B. Graner, J.P. Greene, R.J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T.P. O'Connor, Phys. Rev. A, 80, 054501 (2009). DOI: 10.1103/physreva.80.054501
  48. M. Yasuda, T. Kishimoto, M. Takamoto, H. Katori, Phys. Rev. A, 73, 011403(R) (2006). DOI: 10.1103/physreva.73.011403

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru