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1. Introduction

Quantitative prediction of the probabilities of radiative

electronic transitions of atoms, molecules and clusters,

lifetimes of excited states and branching coefficients for

their decay processes is required for the development

of theoretical molecular and atomic spectroscopy, pho-

tochemistry, the creation of effective schemes for laser

synthesis of ultracold matter, the development of new laser

media, plasma technologies and other applications. A

preliminary theoretical assessment of the characteristics of

radiative processes is of particular importance for the rapidly

progressing field of experimental spectroscopy of atoms and

molecules of compounds of heavy elements that do not

have stable isotopes [1,2]. These objects seem to be the

most promising for detecting effects not described by the

Standard Model of fundamental interactions in low-energy

(
”
tabletop“) experiments [3–5].

One of the most promising tools of ab initio modeling

of broad classes of low-lying electronic states of systems

including atoms of the lower part of the Periodic table is the

relativistic coupled cluster method formulated for the Fock

space (Fock space relativistic coupled cluster, FS RCC; [6]).
Being a highly effective tool of obtaining information on the

energy characteristics and expectation values of property

operators that determine the change in the energy of states

when an external perturbation is applied, the FS RCC

method is less suitable for calculating the transition values

of properties (non-diagonal matrix elements), including the

dipole moments of electronic transitions that determine

probabilities of most radiative processes in atoms and

molecules. The bivariational approach to calculating these

quantities [7–9] is very complicated and, as far as we

know, has not yet been implemented in the general case

for two- or four-component relativistic models of the

electronic structure of molecules; the cumbersomeness of

the computation scheme is aggravated by the necessity to

perform an independent calculation for each pair of states,

while the energies of all states under study are determined

simultaneously as the eigenvalues of the effective Hamilto-

nian FS RCC.

In practice, the finite-field (FF) method for calculating

transition properties [10–12], based on the use of the

approximate off-diagonal Hellmann–Feynman relation for

effective operators [13], has proven itself well. With

its help, the matrix elements of the property operator

are obtained simultaneously for all pairs of states under

consideration based on an analysis of the response of the

eigenvectors of the FS RCC effective Hamiltonian to an

external perturbation. However, the amount of the required

additional calculations turns out to be in the best case (for
low-symmetry systems) comparable to what is required to

solve the amplitude equations of the FS RCC method, and

in the worst case (when an external perturbation reduces

the symmetry of the studied object) exceeds it many times

over.

More economical calculation schemes involve direct

approximate construction of the effective property operator

with the replacement of the formally infinite expansion in

a power series of cluster amplitudes by the sum of the

first few terms [14–20] and the subsequent calculation of its

matrix elements between the eigenvectors of the effective
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Hamiltonian. Until recently, the scope of application of

such schemes was limited to the description of transitions

in atoms and atomic ions (usually between states with

one electron outside a closed shell). In 2023 [21]
a scheme of this type was implemented as part of a

software package for molecular calculations. Its use in

combination with the formulation of the FS RCC method

for intermediate effective Hamiltonians and incomplete main

model spaces [22] allowed applications to the transitions

between electronic states of rather complex composition;

in particular, it was successfully applied to assess the

radiative lifetimes of excited electronic states of the ThO

molecule. A drawback of this scheme consists in the fact

that the resulting approximate effective operators (with the

exception of the trivial case of omitting all terms depending

on cluster amplitudes) do not allow representation in terms

of connected Hugenholtz-Brandow diagrams and, therefore,

do not provide physically correct behavior of the resulting

estimates of transition property values during fragmentation

of the system under study. In the mentioned work [21],
the fundamental opportunity of eliminating this drawback

was demonstrated due to the preserving of all terms of the

effective property operator expansion up to the second order

in cluster amplitudes.

The implementation of a method for calculating transition

properties within the FS RCC theory is described below

using effective operators represented only by connected

diagrams. The results of applications to the modeling of

E1 transitions between low-lying states of the Sr atom for

which the quite reliable experimental data are available, and

the Ra atom, which are of particular interest for experiments

searching for the effects of violation of discrete symmetries

of fundamental interactions [23,25], are presented. The

developed approach is focused primarily on studying the

properties of transitions in polyatomic systems, and the

choice of atomic objects in the present work is motivated

by a higher accuracy of experimental data on transition

probabilities for these systems.

2. Direct method for calculating
off-diagonal matrix elements

The solution of the relativistic analogue of the many-

electron Schrödinger equation with the Hamiltonian H
within the FS RCC method consists in definition of a com-

plete (with all possible ways of distributing quasiparticles

over ¡¡active¿¿spinors) model subspace and constructing an

exponentially parameterized wave operator � that restores

the exact wave functions ψi from their projections onto the

model space (model vectors) ψ̃i [6,26–28]:

|ψi〉 = �|ψ̃i〉, � = {exp(T )}, (1)

where the cluster operator T is represented by a linear com-

bination of excitation operators, the coefficients of which

are called cluster amplitudes, and the brackets {} stand

for the normal ordering of second quantization operators

defined with respect to the chosen Fermi vacuum. The

model vectors ψ̃i are the right eigenvectors of the effective

Hamiltonian operator in the model space, H̃ = (V�)cl,conn,
where the index

”
cl“ means the closed part of the operator

(without excitations from the model space to its orthogonal

complement), and the index
”
conn“ — the sum of its terms,

represented by the connected diagrams.

If ψ̃i are normalized to unity, then the normalization of

the desired wave functions is nontrivial,

〈ψi |ψi〉 = 〈ψ̃i |(�
†�)cl |ψ̃i〉 = N2

i . (2)

Let us define the effective operator Õ corresponding to

the quantum mechanical operator O of some one-electron

property, according to Eq. [29]

Õ = (�†�)−1
cl (�†O�)cl (3)

(it is assumed that the (�†�)cl operator is inverted in

the model space). The matrix element of the property

operator Oi f = 〈ψi |O|ψ f 〉 can be calculated from the

effective operator and model vectors as

Oi f = Ni N
−1
f 〈ψ̃⊥⊥

i |Õ|ψ̃ f 〉, (4)

where ψ̃⊥⊥
i is a left eigenvector of the effective Hamilto-

nian, 〈ψ̃⊥⊥
i |ψ̃ j〉 = δi j . For many properties represented by

Hermitian operators, including transition dipole moments,

the physical meaning can be attributed to not the matrix

elements themselves, but the squares of their absolute values

|Oi f |
2. In this case, it is possible not to calculate the

normalization factors Ni and N f , since from (3) and the

hermiticity of O it immediately follows that

|Oi f |
2 = |〈ψ̃⊥⊥

i |Õ|ψ̃ f 〉| |〈ψ̃
⊥⊥
f |Õ|ψ̃i〉|. (5)

For the exponential operator � = {eT} both (�†�)cl,
and (�†O�)cl are represented by formally infinite series.

The most obvious approximate approach to constructing

the matrix of the effective operator (3), previously used

in work [21], is to calculate the matrices (�†�)cl and

(�†O�)cl in the model space with the exclusion of terms

with powers T higher than the given K (in other words,

in K order by cluster amplitudes), exactly inverting the

first of them and substituting the results into the right

side of equation (3). However, this approach does not

ensure the absence of contributions in the approximate

effective operator corresponding to disconnected diagrams,

which leads to a loss of dimensional consistency and,

accordingly, physically incorrect behavior of the calculated

matrix elements of the property at the system fragmentation.

An alternative approximation which is more rought at first

glance can be obtained by representing the inverse matrix

as a Taylor series

(�†�)−1
cl = (1 + (T †T )cl + ...)−1 = 1− (T †T )cl + . . .

(6)
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and discarding all terms containing powers of T higher than

the given value K in the corresponding expression for Õ. In

the case of K = 2

Õ(2) =

(

O + T †O + OT +
{(T †)2}

2
O

+ T †OT + O
{T 2}

2
− (T †T )clO

)

cl

. (7)

In the paper [21] the exact mutual cancellation of

all contributions to Õ(2) corresponding to disconnected

diagrams was proved: Õ(2) = Õ(2)conn . Therefore, the

computational scheme based on approximation (7) ensures

size-consistency of results and, despite neglecting some

terms, seems to be more correct for systems with a large

number of correlated electrons than the one used in [21].
The use of lower order approximations using the cluster

operator T (K ≤ 2) to calculate matrix elements of prop-

erties is justified only in cases where cluster amplitudes

are small. Accounting for the higher-order terms in T is

possible, but it leads to an explosive increase in the number

of Hugenholtz–Brandov diagrams corresponding to them.

The described method for approximate calculation of

effective property operators with an accuracy of up to

K-th order Õ(K), K ≤ 2, was implemented in the EXP-

T [30] software package for vesions of the FS RCC method

including single and double (FS RCCSD) and additionally

triple (FS RCCSDT) excitations in the cluster operator T .

3. Details of the computational
procedure

To assess the accuracy and reliability of the proposed

approach, it was used to calculate the dipole moments of

the allowed E1 transitions between low-lying states of Sr

and Ra atoms.

Quantitative reproduction of the characteristics of elec-

tronic transitions in heavy atoms and compounds including

them involves the use of high-precision approximations

for the relativistic Hamiltonian. In this work, the two-

component generalized relativistic pseudopotential model

was used as a Hamiltonian [31]. The model accounted for

the Breit interelectronic interactions [32], the finite size of

the atomic nucleus [33], and corrections for the electron self-

energy and vacuum polarization were taken into account

for Ra [22]. The shells of atoms with principal quantum

numbers n ≤ 3 for Sr and n ≤ 4 for Ra were excluded from

explicit treatment. When applied to calculations of low-

energy processes, such a model is superior in accuracy to

the four-component Dirac–Coulomb model and is usually

not inferior in this respect to the Dirac–Coulomb–Breit
approximation[34].
The components of one-electron spinors were expanded

in primitive Gaussian functions. The basis set for Sr

included the (11s11p8d7 f 5g4h3i) functions and was con-

structed based on the ANO-RCC [35] sets. The basis for

Ra with composition (17s14p12d11 f 8g7h6i) was taken

from [22]. The calculated values of excitation energies and

transition dipole moments were found to be stable with

respect to further expansion of these sets without increasing

the maximum value of angular momentum, which was not

possible for the used version of the programs.

The simulation of electronic states of the atoms consid-

ered was performed within the FS RCCSD approximation.

The neutral atom states were constructed in the Fock space

sector 0h2p (two electrons over a closed shell); the ground

state of a doubly charged atomic ion was considered as a

Fermi vacuum:

M2+(0h0p) → M+(0h1p) → M0(0h2p) (M = Sr, Ra).

As a rule, the application of the FS RCC method to

states with two or more electrons above a closed shell is

associated with the intruder state problem, which leads to

the impossibility of solving the amplitude equations by the

standard Jacobi method [6]. This problem was solved using

the recently proposed intermediate Hamiltonian technique

with incomplete main model spaces [22]. The model space

was construced as a direct sum of the
”
main “ (typically

incomplete) and buffer subspaces; the energy denominators

corresponding to excitations from the buffer subspace were

modified by simulating imaginary dynamic shifts [11]. The
complete model space for the Sr atom corresponded to

all possible distributions of two electrons over the active

spinors 4d f , 5s pd f , 6s pd, 7s p, and the incomplete main

model subspace was extended by the configurations 5s2,
5s4d, 5s5p, 5s6s , 5s6p and 5s5d . In the case of the Ra

atom, the active space included the spinors 5 f , 6d f , 7s pd,
8s pd, 9s pd, 10s p, 11s , and the main model subspace —
the configurations 7s2, 7s6d and 7s7p.
Solutions of the relativistic Hartree–Fock equations for

the vacuum state and molecular integrals in the ba-

sis of Hartree–Fock spinors were obtained using the

DIRAC [36,37] software package, supplemented with the

LIBGRPP [34] library for calculating integrals over opera-

tors of generalized relativistic pseudopotentials. All coupled

cluster calculations were performed using the EXP-T [30]
program. The lifetimes of excited states were calculated

using the experimental values of the excitation energies of

Sr and Ra [38] atoms.

4. Results and discussion thereof

The results of calculations of excitation energies and

emission characteristics of strontium and radium atoms are

presented in Tables 1–4. In the case of the Sr atom, the

error in calculating the excitation energies does not exceed

several tens of wavenumbers for states in which spin triplets

dominate, and slightly increases for the predominantly

singlet states 1D2 and 1Po
0. The error for the D states of

the Ra atom is slightly higher, up to 180 cm−1. Deviations

of the calculated data for Ra from the experimental ones

are due to the difficulty of describing dynamic correlations
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Table 1. Excitation energies of Sr and Ra atoms into low-lying

electronic states (cm−1). 1Edenotes the deviation (cm −1) of

excitation energies calculated by the FS RCCSD method from

experimentally measured ones [38]

Sr Ra

1S0 → Exp. 1E Exp. 1E

3P◦

0 14318 14 13078 -26
3P◦

1 14504 12 13999 -22
3P◦

2 14899 8 16689 -24
3D1 18159 61 13716 180
3D2 18219 62 13994 173
3D3 18319 63 14707 164
1D2 20150 114 17081 177
1P◦

0 21698 131 20716 79

Table 2. The calculated values of scalar squared dipole moments

of electronic transitions |d|2 (a. u.) between low-lying states of

the strontium atom (taking into account summation over states

of the lower level). D̃(0) — contributions depending on cluster

amplitudes to D̃ are not taken into account; D̃(2) — the effective

operator includes terms up to the second order in T ; FF —
finite-field method [10]; ¡¡CI+all-order¿¿— combined relativistic

method for calculation of atoms [39]

Sr |d|2 , a. u.

Transitions D̃(0) FF D̃(2) CI+all-order [40]

3P◦

1 → 1S0 0.0081 0.0073 0.0073 0.0083
3D1 → 3P◦

0 2.620 2.366 2.386 2.385

→ 3P◦

1 1.973 1.783 1.798 1.796

→ 3P◦

2 0.133 0.120 0.121 0.121
3D2 → 3P◦

1 3.541 3.202 3.228 3.231

→ 3P◦

2 1.193 1.081 1.089 1.090
3D3 → 3P◦

2 4.780 4.335 4.367 4.379
1D2 → 3P◦

1 0.0071 0.0064 0.0064 –
→ 3P◦

2 0.0019 0.0017 0.0018 –
1P◦

1 → 1S0 10.083 9.362 9.227 9.265

→ 3D1 0.0012 0.0011 0.0011 –

→ 3D2 0.0031 0.0027 0.0027 –
→ 1D2 1.079 1.139 1.144 –

in states with relatively high orbital momentum, especially

in the case of dominance of low-spin components.

Tables 2 and 3 present the scalar squares |d|2 of the

matrix elements of the dipole moment operator (O = D) of
electronic transitions, calculated within various approxima-

tions. The simplest way to obtain estimates of the transition

moments is to calculate the matrix elements of the usual

coordinate operator with model vectors (it is the zero-order

approximation according to T , D̃(0)). Such assessments

typically turn out to be overestimated [12], this also occurs

in the case of Sr and Ra atoms. The |d|2 values for the

studied pairs of states obtained by the finite-field method

(FF) and the direct method in the second order in T (D̃(2))

Table 3. The calculated scalar squares of dipole moments of

|d|2 (a. u.) electronic transitions between low-lying states of the

radium atom (taking into account summation over states of the

lower level). The designations are the same as in the Table 2

Ra |d|2 , a. u.

Transitions D̃(0) FF D̃(2) CI+MBPT [41]

3D1 → 3P◦

0 3.396 2.851 2.865 2.990
3P◦

1 → 1S0 0.510 0.421 0.419 0.495

→ 3D1 2.520 2.129 2.140 2.208

→ 3D2 7.164 6.064 6.090 6.401
3P◦

2 → 3D1 0.107 0.092 0.093 0.095

→ 3D2 1.502 1.302 1.307 1.357

→ 3D3 8.750 7.635 7.660 8.039
1D2 → 3P◦

1 0.043 0.035 0.037 0.024

→ 3P◦

2 0.062 0.055 0.055 0.052
1P◦

1 → 1S0 11.480 9.983 9.911 10.098

→ 3D1 0.055 0.052 0.052 0.063

→ 3D2 0.221 0.192 0.195 0.220

→ 1D2 3.202 3.130 3.068 3.390

differ from each other by no more than 2%, which indirectly

indicates the high accuracy and reliability of both of these

approaches . Note that the amount of computational work

when using the direct method is negligible compared to that

for solving the amplitude FS RCC equations.

Due to the fact that experimental data on the partial

lifetimes of the excited states of Sr and Ra are not available,

the obtained values of |d|2 were compared with the results

of the most accurate relativistic calculations within the

framework of CI+all-order approaches (a combination of

configuration interaction (CI) and coupled cluster meth-

ods) [40] and CI+MBPT (combination of CI with second-

order perturbation theory) [41]. The differences between

the results of FS RCC / D̃(2) and CI+all-order for Sr do

not exceed 0.4%, with the exception of the formally spin-

forbidden transition 3Po
1 →

1S0 (12%). For Ra, the results

of FS RCC / D̃(2) and CI+MBPT differ on average by

several percent, but the differences increase drastically for

spin-forbidden transitions (up to 35% for 1D2 →
3P◦

1). This
discrepancy is likely due to the insufficiently high accuracy

of the combined CI+MBPT method, which is based on the

second-order perturbation theory.

Table 4 presents the τ lifetimes of the excited states

studied, calculated in the D̃(2) approximation taking into

account all allowed E1 decay channels and measured

experimentally. In most cases, the calculated lifetimes found

using the effective D̃(2) operators and finite difference

techniques are in good agreement with the experimental

values. Noticeable discrepancies occur only for the longest-

lived states (the calculated lifetimes exceed measured ones

by 14% for 1D2 Sr and 30% for 1D2 Ra). It is for such

states that an underestimation of experimental values of

radiative lifetimes should be expected due to the difficulty

of accounting for the effects of non-radiative decay channels,
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Table 4. Radiation-induced (E1) lifetimes of excited states of Sr

and Ra atoms. The calculated values were obtained within the

framework of the D̃(2) approximation

Sr Ra

Theor. Exp. Theor. Exp.

3Po
0 – – – –

3Po
1 22.1 µs 21.3±0.5 µs [42] 429 ns 422±20 ns [43]

3Po
2 – – 5.64 µs no data

3D1 2.17 µs 2.18±0.01 µs [44] 665 µs 510±60 µs [45]
3D2 2.40 µs no data – –
3D3 2.82 µs no data – –
1D2 351 µs 410±10 µs [46] 452 µs 385±45 µs [47]
1Po

0 5.24 ns 5.263±0.004 ns [48] 5.59 ns No data

especially in technically complicated experiments with

radioactive Ra. Note that when the direct contributions of

cluster amplitudes to the effective operator (version D̃(0))
are neglected, the calculated lifetimes decrease; it formally

corresponds to a decrease in the discrepancy between the

theoretical and measured values. It is also impossible to

reduce certain errors in theoretical estimates due to the

difficulties mentioned above in describing states with low

spin and high values of spatial angular momentum.

5. Concluding remarks

Pilot calculations of transition dipole moments between

low-lying states of Sr and Ra atoms have demonstrated

the high accuracy and reliability of the direct scheme

for calculating the transition matrix elements of property

operators within the relativistic Fock space coupled cluster

method, based on the construction of a matrix of an effec-

tive property operator accurate to second-order in cluster

amplitudes. It should be emphasized that the proposed

approach and its software implementation, being applicable

to the description of transitions in atoms, are focused mainly

on applications to molecular systems, including polyatomic

ones, and cluster models of impurities in solids. The

prospects for such applications are associated with high

efficiency of the scheme and physically correct behavior for

systems with a large number of electrons (size-consistency)
due to the possibility of representing effective operators in

terms of connected diagrams.

A further increase in the accuracy of calculations can

be achieved primarily by including triple excitation op-

erators into the model (the CCSDT approximation); this

contribution can be very significant for systems with more

complex composition of electronic states. The proof of the

statement about the connectivity of expression (3) for an

arbitrary finite order of expansion T would be of interest

for the fundamental theory of many-particle systems. The

found radiative characteristics of the radium atom can be

useful in planning experiments on direct laser cooling [25]

and searching for violations of discrete symmetries of

fundamental interactions.
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