Determination of the refractive indices of photonic crystal layers from anodic alumina
Pyatnov M. V. 1,2, Sokolov M. M.2, Kiselev I. A.2, Bikbaev R. G. 1,2, Pankin P. S. 1,2, Volkova I. R.1,3, Gunyakov V. A.1, Volochaev M. N.1, Ryzhkov I. I. 2,4, Vetrov S. Ya.1,2, Timofeev I. V. 1,2, Shabanov V. F.1,3
1Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
4Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: MaksPyatnov@yandex.ru, tiv@iph.krasn.ru

PDF
Samples of photonic crystals with a different number of structure periods were fabricated by the method of anodizing aluminum foil. Using the angular dependence of transmission spectra, transmission electron microscopy data and numerical simulation, the refractive indices of photonic crystal layers are determined. The structure of the samples, the thickness of the layers and their porosity were determined. The theory of the effective medium in the approximations of Bruggemann, Maxwell Garnett, Monecke, Landau-Lifshitz/Looyenga, Lorentz-Lorentz, del Rio-Zimmerman-Dawe, as well as the complex refractive index is applied to determine the refractive indices of the layers. All approximations showed similar values, which indicates the possibility of using them to describe heterogeneous dielectric media. Keywords: photonic crystal, aluminum oxide, porous material, photonic band gap, anodizing, effective refractive index.
  1. J.D. Joannopoulos, P.R. Villeneuve, Sh. Fan. Solid State Commun., 102 (2-3), 165 (1997). DOI: 10.1016/S0038-1098(96)00716-8
  2. X. Lv, B. Zhong, Y. Huang, Z. Xing, H. Wang, W. Guo, X. Chang, Z. Zhang. Chin. J. Mech. Eng., 36, 39 (2023). DOI: 10.1186/s10033-023-00836-2
  3. A.A. Yeliseyev, A.V. Lukashin. Funktsional'nyye nanomaterialy (Fizmatlit, M., 2010) (in Russian)
  4. C.S. Law, S.Y. Lim, A.D. Abell, N.H. Voelcker, A. Santos. Nanomaterials, 8 (10), 788 (2018). DOI: 10.3390/nano8100788
  5. G. Shang, D. Bi, V.S. Gorelik, G. Fei, L. Zhang. Mat. Tod. Comm., 34, 105052 (2023). DOI: 10.1016/j.mtcomm.2022.105052
  6. G.D. Sulka, K. Hnida. Nanotechnology, 23, 075303 (2012)
  7. S.E. Kushnir, T.Y. Pchelyakova, K.S. Napolskii. J. Mater. Chem. C, 6, 12192 (2018). DOI: 10.1039/C8TC04246B
  8. P. Roy, S. Berger, P. Schmuki. Angewandte Chemie International Edition, 50 (13), 2904 (2011). DOI: 10.1002/anie.201001374
  9. A. Mozalev, R.M. Vazquez, C. Bittencourt, D. Cossement, F. Gispert-Guirado, E. Llobet, H. Habazaki. J. Mater. Chem. C, 2, 4847 (2014). DOI: 10.1039/C4TC00349G
  10. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki. J. Electroceram., 16 (1), 35 (2006). DOI: 10.1007/s10832-006-4351-7
  11. K.V. Chernyakova, E.N. Muratova, I.A. Vrublevsky, N.V. Lushpa. J. Phys.: Conf. Ser., 2086, 012025 (2021). DOI: 10.1088/1742-6596/2086/1/012025
  12. Y. Suzuki, K. Kawahara, T. Kikuchi, R.O. Suzuki, S. Natsui. J. Electrochem. Soc., 166, C261 (2019). DOI: 10.1149/2.0221912jes
  13. T. Shimizu, K. Matsuura, H. Furue, K. Matsuzak. J. Eur. Ceram. Soc., 33 (15-16), 3429 (2013). DOI: 10.1016/j.jeurceramsoc.2013.07.001
  14. M. Sarraf, B. Nasiri-Tabrizi, A. Dabbagh, W.J. Basirun, N.L. Sukiman. Ceram. Int., 46 (6), 7306 (2020). DOI: 10.1016/j.ceramint.2019.11.227
  15. G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, H.M. Ouyang, L. De Zhang. Sci. Rep., 4 (1), 3601 (2014). DOI: 10.1038/srep03601
  16. A. Santos, C.S. Law, D.W.C. Lei, T. Pereira, D. Losic. Nanoscale, 8 (43), 18360 (2016)
  17. C.S. Law, Sukarno, A. Santos. Nanoscale, 9 (22), 7541 (2017). DOI: 10.1039/C7NR02115A
  18. G. Macias, J. Ferre-Borrull, J. Pallares, L.F. Marsal. Nanoscale Res. Lett., 9 (1), 315 (2014). DOI: 10.1186/1556-276X-9-315
  19. A.R. Gomez, L.K. Acosta, J. Ferre-Borrull, A. Santos, L.F. Marsal. ACS Appl. Nano Mat., 6 (7), 5274 (2023). DOI: 10.1021/acsanm.2c05356
  20. Y. Li, C. Yan, X. Chen, Y. Lei, B.-C. Ye. Sensor, Actuat. B-Chem., 350, 130835 (2022). DOI: 10.1016/j.snb.2021.130835
  21. I. Garrido-Cano, L. Pla, S. Santiago-Felipe, S. Simon, B. Ortega, B. Bermejo, A. Lluch, J.M. Cejalvo, P. Eroles, R. Martinez-Manez. ACS Sens., 6 (3), 1022 (2021). DOI: 10.1021/acssensors.0c02222
  22. U. Malinovskis, A. Dutovs, R. Poplausks, D. Jevdokimovs, O. Graniel, M. Bechelany, I. Muiznieks, D. Erts, J. Prikulis. Coatings, 11 (7), 756 (2021). DOI: 10.3390/coatings11070756
  23. M. Ashurov, V. Gorelik, K. Napolskii, S. Klimonsky. Phot. Sens., 10, 147 (2020). https://doi.org/10.1007/s13320-019-0569-2
  24. H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio. Adv. Mater., 18 (2), 213 (2006). DOI: 10.1002/adma.200401940
  25. W. Yang, B. Wang, A. Sun, J. Liu, G. Xu. Mater. Lett., 178, 197 (2016). DOI: 10.1016/j.matlet.2016.05.001
  26. L. Yisen, C. Yi, L. Zhiyuan, H. Xing, L. Yi. Electr. Comm., 13, 1336 (2011). DOI: 10.1016/j.elecom.2011.08.008
  27. S.E. Kushnir, K.S. Napolskii. Mat. Des., 144, 140--150 (2018). DOI: 10.1016/j.matdes.2018.02.012
  28. T.C. Choy. Effective Medium Theory: Principles and Applications (Clarendon Press, Oxford, 1999)
  29. A. Santos, V.S. Balderrama, M. Alba, P. Formenti n, J. Ferre-Borrull, J. Pallarrs, L.F. Marsal. Adv. Mater., 24 (8), 1050 (2012). DOI: 10.1002/adma.201104490
  30. V.S. Gorelik, M.M. Yashin, D. Bi, G. Tao Fei. Opt. Spectrosc., 124, 171 (2018) (in Russian). DOI: 10.21883/OS.2018.02.45519.177-17
  31. A. Yariv, P. Yukh. Opticheskiye volny v kristallakh, trans. from English Mir, M., (1987),
  32. A. Hierro-Rodriguez, P. Rocha-Rodrigues, F. Valdes-Bango, J.M. Alameda, P.A.S. Jorge, J.L. Santos, J.P. Araujo, J.M. Teixeira, A. Guerreiro. J. Phys. D: Appl. Phys., 48, 455105 (2015). DOI: 10.1088/0022-3727/48/45/455105
  33. Electronic source. Available at: https://imagej.nih.gov/ij/index.html
  34. L.A. Apresyan, D.V. Vlasov, D.A. Zadorin, V.I. Krasovsky. ZhTF 87, 10 (2017) (in Russian). DOI: 10.21883/JTF.2017.01.44011.1841
  35. D.A. Bruggeman. Ann. Phys., 24, 636 (1935)
  36. J.C. Maxwell-Garnett. Phil. Trans. R Soc. Lond., 203, 385 (1904)
  37. S.Ya. Vetrov, A.Yu. Avdeeva, M.V. Pyatnov, I.V. Timofeev. Komp. Opt., 44 (3), 319 (2020). DOI: 10.18287/2412-6179-CO-637
  38. J. Monecke. J. Phys: Condens. Matter., 6, 907 (1994). DOI: 10.1088/0953-8984/6/4/010
  39. L.D. Landau, E.M. Lifshits. Elektrodinamika sploshnykh sred (Nauka, M., 2005) (in Russian)
  40. H. Looyenga. Physica, 31 (3), 401 (1965). DOI: 10.1016/0031-8914(65)90045-5
  41. B. Ersfeld, B. Felderhof. Phys. Rev. E, 57, 1118 (1998). DOI: 10.1103/PhysRevE.57.1118
  42. D. Estrada-Wiese, J.A. del Rio. Rev. Mex. Fi s., 64, 72 (2018). DOI: 10.31349/RevMexFis.64.72
  43. J.A. del Rio, R.W. Zimmerman, R.A. Dawe. Sol. St. Comm., 106, 183 (1998). DOI: 10.1016/S0038-1098(98)00051-9

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru