Analysis of Al nanocrystals nucleation process in AlNiGd metallic glass during annealing and severe plastic deformation
Sviridova E. A. 1,2, Vasiliev S. V. 1,2, Abrosimova G. E. 3, Tkatch V. I. 1
1Donetsk Institute of Physics and Technology named after. A.A. Galkina, Donetsk, Russia
2Donbass National Academy of Construction and Architecture, Makeyevka, Russia
3Osipyan Institute of Solid State Physics RAS Russian Academy of Sciences Chernogolovka, Moscow District, Russia
Email: ksvir@list.ru

PDF
Analysis of the process of nanocomposite structures formation in Al87Ni8Gd5 metallic glass under isothermal annealing at 448 K and under high pressure torsion straining was performed in the frames of the classical equation for rate of homogeneous nucleation. The value of specific free energy of the nucleus/matrix interface, which agreed with the experimentally established volume density of nanocrystals, was used as the only one free parameter. The nucleation rate during annealing was estimated using the effective diffusion coefficient, which was taken from the literature, while in the equation for deformation-induced nucleation rate the value of the diffusion coefficient determined by the size of nanocrystals in the deformed sample was used. It was established that approach proposed in this work, which consisted in substituting into the equation for nucleation rate during deformation the value of the work of critical nucleus formation corresponding to room temperature, correctly described the experimentally established enhanced volume density of nanocrystals in deformed samples. Keywords: metallic glass, annealing, deformation, nanocomposite, density of nanocrystals, nucleation rate.
  1. Y. Yoshizawa, S. Oguma, K. Yamauchi. J. Appl. Phys., 64 (10), 6044 (1988). DOI: 10.1063/1.342149
  2. Y.-H. Kim, A. Inoue, T. Masumoto. Mater. Trans. JIM, 31 (8), 747 (1990). DOI: 10.2320/matertrans1989.31.747
  3. H. Chen, Y. He, G.J. Shiflet, S.J. Poon. Scr. Met. Mater., 25 (6), 1421 (1991). DOI: 10.1016/0956-716X(91)90426-2
  4. H. Chen, Y. He, G.J. Shiflet, S.J. Poon. Nature, 367, 541 (1994). DOI: 10.1038/367541a0
  5. G. Abrosimova, D. Matveev, E. Pershina, A. Aronin. Mater. Lett., 183, 131 (2016). DOI: 10.1016/j.matlet.2016.07.053
  6. M.A. Munoz-Morris, S. Surinach, L.K. Varga, M.D. Baro, D.G. Morris. Scr. Mater., 47, 31 (2002). DOI: 10.1016/S1359-6462(02)00093-3
  7. A.M. Glezer, I.E. Permyakova, V.E. Gromov, V.V. Kovalenko. Mechanical behavior of amorphous alloys (SibGIU, Novokuznetsk, 2006)
  8. E.A. Sviridova, S.G. Rassolov, V.V. Maksimov, V.I. Tkatch, V.K. Nosenko. Physics Solid State, 56 (7), 1355 (2014). DOI: 10.1134/S1063783414070312
  9. Y.B. Wang, D.D. Qu, X.H. Wang, Y. Cao, X.Z. Liao, M. Kawasaki, S.P. Ringer, Z.W. Shan, T.G. Langdon, J. Shen. Acta Mater., 60 (1), 253 (2012). DOI: 10.1016/j.actamat.2011.09.026
  10. S.V. Vasiliev, A.I. Limanovskii, V.M. Tkachenko, T.V. Tsvetkov, K.A. Svyrydova, V.V. Burkhovetskii, V.N. Sayapin, O.A. Naumchuk, A.S. Aronin, V.I. Tkatch. Mater. Sci. Eng. A, 850, 143420 (2022). DOI: 10.1016/j.msea.2022.143420
  11. Z.Q. Ren, A.A. Churakova, X. Wang, S. Goel, S.N. Liu, Z.S. You, Y. Liu, S. Lan, D.V. Gunderov, J.T. Wang, R.Z. Valiev. Mater. Sci. Eng. A, 803, 140485 (2020). DOI: 10.1016/j.msea.2020.140485
  12. D.V. Gunderov, E.V. Boltynjuk, V.D. Sitdikov, G.E. Abrosimova, A.A. Churakova, A.R. Kilmametov, R.Z. Valiev. IOP Conf. Ser.: J. Phys.: Conf. Ser., 1134 (1), 012010 (2018). DOI: 10.1088/1742-6596/1134/1/012010
  13. N. Boucharat, R. Hebert, H. Rosner, R. Valiev, G. Wilde. Scr. Mater., 53 (7), 823 (2005). DOI: 10.1016/j.scriptamat.2005.06.004
  14. A. Aronin, A. Budchenko, D. Matveev, E. Pershina, V. Tkatch, G. Abrosimova. Rev. Adv. Mater., 46, 53 (2016)
  15. S.V. Vasiliev, T.V. Tsvetkov, K.A. Svyrydova, V.M. Tkachenko, A.S. Aronin, V.I. Tkatch. J. Non-Cryst. Sol., 699, 121968 (2023). DOI: 10.1016/j.jnoncrysol.2022.121968
  16. J. Christian. Teoriya prevrashcheniy v metallakh i splavakh (in Russian)(Mir, M., 1978), part 1
  17. W. Koester, W. Herold. Metal glasses (Mir, M., 1983), p. 325-371
  18. K.F. Kelton. Solid State Phys. --- Advances in Research and Application, eds. H. Ehrenreich, D. Turnbull (Acad. Press, NY., 1991), p. 75--177
  19. K.F. Kelton, T.K. Croat, A.K. Gangopadhyay, L.-Q. Xing, A.L. Greer, M. Weyland, X. Li, K. Rajan. J. Non-Cryst. Sol., 317, 71 (2003). DOI: 10.1016/S0022-3093(02)02004-5
  20. X.Y. Jiang, Z.C. Zhong, A.L. Greer. Mater. Sci. Eng. A, 226-228, 789 (1997). DOI: 10.1016/S0921-5093(96)10732-2
  21. J.H. Perepezko, S.D. Imhoff, R.J. Hebert. J. Alloys Compds., 495 (2), 360 (2010). DOI: 10.1016/j.jallcom.2009.10.051
  22. S.G. Rassolov, V.V. Maksimov, T.N. Moiseeva, V.K. Nosenko, V.I. Tkatch. Metallofiz. Noveishie Tekhnol. 34, (12), 1625 (2012)(in Russian)
  23. V.I. Tkatch, S.G. Rassolov, V.K. Nosenko, V.V. Maksimov, T.N. Moiseeva, K.A. Svyrydova. J. Non-Cryst. Sol., 358 (20), 2727 (2012). DOI: 10.1016/j.jnoncrysol.2012.02.023
  24. B.B. Straumal, A.R. Kilmametov, I.A. Mazilkin, A. Korneva, P. Zemba, B. Baretski. Pis'ma v ZhETF, 110 (9), 622 (2019) (in Russian). DOI: 10.1134/S0370274X1921010
  25. I.E. Permyakova, A.M. Glezer, A.I. Kovalev, V.O. Vakhrushev. Pis'ma v ZhETF, 113 (7), 468 (2021) (in Russian). DOI: 10.31857/S1234567821070089
  26. C. Zener. J. Appl. Phys., 20, 950 (1949). DOI: 10.1063/1.1698258
  27. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.R. Kilmametov, A.V. Druzhinin, B. Baretski. Pis'ma v ZhETF, 112 (1), 45 (2020) (in Russian). DOI: 10.31857/S1234567820130078
  28. A.A. Rusakov. Rentgenografiya metallov (Atomizdat, M., 1977) (in Russian)
  29. T. Gloriant, M. Gich, S. Surinach, M.D. Baro, A.L. Greer. Mater. Sci. Forum, 343-436, 365 (2000). DOI: 10.4028/www.scientific.net/MSF.343-346.365
  30. C.V. Thompson, F. Spaepen. Acta Metall., 31 (12), 2021 (1983). DOI:10.1016/0001-6160(83)90019-6
  31. C.V. Thompson, F. Spaepen. Acta Metall., 22 (12), 1855 (1979). DOI: 10.1016/0001-6160(79)90076-2
  32. V.I. Tkatch, S.G. Rassolov, T.N. Moiseeva, V.V. Popov. J. Non-Cryst. Sol., 351, 1658 (2005). DOI: 10.1016/j.jnoncrysol.2005.04.057
  33. G.V. Samsonov. Svoystva elementov. (Spravochnik) (Metallurgiya, M., 1976) Part 1. (in Russian)
  34. W.H. Jiang, M. Atzmon. Acta Mater., 51, 4095 (2003). DOI: 10.1016/S1359-6454(03)00229-5
  35. F. Ye, K. Lu. Acta Mater., 47 (8), 2449 (1999). DOI: 10.1016/S1359-6454(99)00104-4
  36. P. Henits, A. Revesz, L.K. Varga, Zs. Kovacz. Intermetallics, 19, 267 (2011). DOI: 10.1016/j.intermet.2010.10.007
  37. F. Spaepen. Solid State Phys. --- Advances in Research and Application (Acad. Press., NY., 1994), p. 1-32
  38. M. Palumbo, C. Papandrea, L. Battezzati. J. Mater. Sci., 40, 2431 (2005). DOI: 10.1007/s10853-005-1970-3
  39. A.L. Greer. Mater. Sci. Eng. A, 179/180, 41 (1994). DOI: 10.1016/0921-5093(94)90161-9

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru