Evolution of the composition of the zirconium alloy surface layer under external thermal influence
A.L. Maslov 1, N.N. Nazarenko 1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: masloaleksey@rambler.ru, nnelli@ispms.ru

PDF
A macromodel of the composition evolution in a cylindrical sample under short-term thermal influence is presented. The model takes into account cross effects and chemical reactions. Stresses and deformations are evaluated. The value of stresses depends on the initial composition, chemical reactions and cross effects. The problem is extended to a micromodel in which diffusion near the sample surface is investigated. The micromodel takes into account the grain structure of the sample material and the phenomenon of mass flux relaxation during diffusion. The influence of relaxation times on the rate of formation of chemical reaction products is investigated. Keywords: diffusion, zirconium alloys, grain boundaries, mechanical stresses, strains.
  1. R.W. Cahn, P. Haasen, E.J. Kramer. Materials Science and Technology (WILEY-VCH Verlag GmbH \& Co KGaA, NY., 1994)
  2. S.A. Nikulin. Tsirkonievye splavy dlya yadernykh energeticheskikh reaktorov (Izd-vo "MISIS", M., 2007) (in Russian)
  3. S.J. Zinkle, G.S. Was. Acta Mater, 61 (3), 735 (2013). DOI: 10.1016/j.actamat.2012.11.004
  4. S.J. Zinkle, L.L. Snead. Annu. Rev. Mater. Res., 44 (1), 241 (2014). DOI: 10.1146/annurev-matsci-070813-113627
  5. T. Allen, J. Busby, M. Meyer, D. Petti. Mater. Today, 13 (12), 14 (2010). DOI: 10.1016/S1369-7021(10)70220-0
  6. B. Ensor, A.M. Lucente, M.J. Frederick, J. Sutliff, A.T. Motta. J. Nucl. Mater., 496, 301 (2017). DOI: 10.1016/j.jnucmat.2017.08.046
  7. Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe. Nucl. Eng. Design, 316, 131 (2017). DOI: 10.1016/j.nucengdes.2017.02.031
  8. C. Herzig, S.V. Divinski. Mater. Transactions, 44 (1), 14 (2003)
  9. C. Suryanarayana, C.C. Koch. Hyperfine Interactions, 130 (5), 5 (2000)
  10. L. Chen, Z. Wang, H. Zhu, P.A. Burr, J. Qu, Yi. Huang, L. Balogh, M. Preuss, O. Muransky. Scripta Mater., 210, 114410 (2022). DOI: 10.1016/j.scriptamat.2021.114410
  11. I.P. Chernov, S.V. Ivanova, M.H. Krening, N.V. Koval, V.V. Larionov, A.M. Leader, N..S. Pushilina, E.N. Stepanova, O.M. Stepanova, Y.P. Cherdantsev. ZhTF, 82 (3), 81 (2012) (in Russian)
  12. I.P. Chernov, N.S. Pushilina, E.V. Berezneeva, A.M. Leader, S.V. Ivanova. ZhTF, 83 (9), 38 (2013) (in Russian)
  13. I.P. Chernov, E.V. Berezneeva, P.A. Beloglazova, S.V. Ivanova, I.V. Kireeva, A.M. Leader, G.E. Remnev, N.S. Pushilina, Y.P. Cherdantsev. ZhTF, 84 (4), 68 (2014) (in Russian)
  14. I.P. Chernov, E.V. Berezneeva, N.S. Pushilina, V.N. Kudiyarov, N.N. Koval, O.V. Krysina, V.V. Shugurov, S.V. Ivanov, A.N. Nikolaeva. ZhTF, 85 (2), 102 (2015) (in Russian)
  15. A.G. Knyazeva, V.G. Demidov. Vestnik Permskogo gos. tekh. un-ta. Mekhanika 3, 84 (2011) (in Russian)
  16. M.V. Chepak-Giesbrecht, A.G. Knyazev. Vychislitelnaya mekhanika sploshnykh sred 12 (1), 57 (2019) (in Russian)
  17. A.P. Babichev, N.A. Babushkina, A.M. Bratkovsky, M.E. Brodov, M.V. Bystrov, B.V. Vinogradov, L.I. Vinokurova, E.B. Gelman, A.P. Geppe, I.S. Grigoryev, K.G. Gurtovoy, V.S. Egorov, A.V. Eletsky, L.K. Zarembo, V.Y. Ivanov, V.L. Ivashintseva, V.V. Ignatiev, R.M. Imamov, A.V. Inyushkin, N.V. Kadobnova, I.I. Karasik, K.A. Kikoin, V.A. Krivoruchko, V.M. Kulakov, S.D. Lazarev, T.M. Lifshits, Yu.E. Lubarsky, S.V. Marin, I.A. Maslov, E.Z. Meilikhov, A.I. Migachev, S.A. Mironov, A.L. Musatov, Yu.P. Nikitin, L.A. Novitsky, A.I. Obukhov, V.I. Ozhogin, R.V. Pisarev, Yu.V. Pisarevsky, V.S. Ptuskin, A.A. Radzig, V.P. Rudakov, B.D. Summ, R.A. Sunyaev, M.N. Khlopkin, I.N. Khlustikov, V.M. Cherepanov, A.G. Chertov, V.G. Shapiro, V.M. Shustriakov, S.S. Yakimov, V.P. Yanovsky. Fizicheskie velichiny: Spravochnik. Ed. by I.S. Grigor'ev, E.Z. Meilikhov (Energoatomizdat, M., 1991) (in Russian)
  18. A. Zuttel. Materials for Hydrogen Storage, 6 (9), 24 (2003)
  19. A. Zuttel, A. Borgschulte, L. Schlapbach. Hydrogen as a Future Energy Carrier (WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2008)
  20. T.P. Chernyaeva, A.V. Ostapov. Voprosy atomnoy nauki i tekhniki 2, 3 (2014) (in Russian)
  21. R.K. Siripurapu. Intern. J. Nucl. Energy, 2014, 1 (2014)
  22. K. McKay. Vodorodnye soedineniya metallov (Mir, M., 1968) (in Russian)
  23. C. Juillet, M. Tupin, F. Martin, Q. Auzoux, C. Berthinier, F. Miserque, F. Gaudier. Intern. J. Hydrogen Energy, 44 (39), 21264 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.034
  24. X. Ma, C. Toffolon-Masclet, T. Guilbert, D. Hamon, J.C. Brachet. J. Nucl. Mater., 377, 359 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.012
  25. M. Arimondi, U. Anselmi-Tamburini, A. Gobetti, Z.A. Munir, G. Spinolo. J. Phys. Chem. B., 101 (41), 8059 (1997)
  26. A.I. Volkov, I.M. Zharskii, Bol'shoi khimicheskii spravochnik (Sovremennaya Shkola, Minsk, 2005) (in Russian)
  27. P.L. Brown, E. Curty, B. Grambow. Chemical Thermodynamics of Zirconium (Elsevier Science, Churchill, 2005)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru