Physics of the Solid State
Volumes and Issues
General boundary conditions for envelope wave functions at semiconductor nanocrystals surface
Russkikh K.I.1, Rodina A. V. 1
1Ioffe Institute, St. Petersburg, Russia
Email: kirill.russkih99@gmail.com, anna.rodina@mail.ioffe.ru

PDF
Theoretical calculations of electron energy spectrum and wave functions in spherical semiconductor nanocrystals (NC) surrounded by a dielectric media are presented. The case of high, but finite potential barrier at the NC surface, i. e. at the boundary between semiconductor and dielectric, is considered with account taken for a large difference between electron effective mass inside and outside of NC. We argue that within effective mass method such NC surface can be described as impenetrable for electron with nonvanishing envelope wave functions at the boundary. General boundary conditions that provide a consistent description of quantum size energy levels of localized electron states are suggested and the conditions of their applicability are determined. General boundary conditions are characterized by a single surface parameter that depends only on the height U of the potential barrier and electron effective mass mB outside NC. We show that the energies of electron levels decrease while the probability of finding electron at the NC surface increases with increasing mB. The analytical asymptotic expressions for the dependence of the electron ground state energy on U and mB are obtained. Keywords: semiconductors, quantum dots, nanocrystals, boundary conditions, effective mass method.
  1. Al.L. Efros, L.E. Brus. ACS Nano 15, 4, 6192 (2021)
  2. A.I. Ekimov, A.A. Onushchenko. JETP Lett. 40, 8, 1136 (1984)
  3. L.E. Brus. J. Chem. Phys. 79, 11, 5566 (1983)
  4. Al.L. Efros, A.L. Efros. Sov. Phys. Semicond. 16, 7, 772 (1982)
  5. F.P.G. de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer, E.H. Sargent. Science 373, 640, 1 (2021)
  6. Y.-S. Park, J. Roh, B.T. Diroll, R.D. Schaller, V.I. Klimov. Nature Rev. Mater. 6, 382 (2021)
  7. F. Meinardi, F. Bruni, S. Brovelli. Nature Rev. Mater. 2, 17072 (2017)
  8. J.H. Olshansky, S.M. Harvey, M.L. Pennel, M.D. Krzyaniak, M.R. Wasielewski, R.D. Schaller. J. Am. Chem. Soc. 142, 31, 13590 (2020)
  9. C.R. Kagan, L.C. Bassett, C.B. Murray, S.M. Thompson. Chem. Rev. 121, 3186 (2021)
  10. A.P. Alivisatos. Nature Biotechnology 22, 47 (2004)
  11. A. Sukhanova, I. Nabiev. Critical Rev. Oncology/Hematology 68, 39 (2008)
  12. C. Giansante. Chem. Eur. J. 27, 14358 (2021)
  13. A.R. Khabibulin, Al.L. Efros, S.C. Erwin. Nanoscale 12, 23028 (2020)
  14. J.W. Conley, C.B. Duke, G.D. Mahan, J.J. Tiemann. Phys. Rev. 150, 2, 466 (1966)
  15. D.J. Ben Daniel, C.B. Duke. Phys. Rev. 152, 2, 683 (1966)
  16. A. Rodina, A. Alekseev, Al.L. Efros, M. Rosen, B.K. Meyer. Phys. Rev. B 65, 12, 125302 (2002)
  17. N. Yahyaoui., N. Zeiri, P. Baser, M. Said, S. Saadaoui. Plasmonics 18, 1 (2023)
  18. T. Ando, S. Mori. Surf. Sci. 113, 124 (1982)
  19. G.T. Einevoll, L.J. Sham. Phys. Rev. B 49, 15, 10533 (1994)
  20. B. Laikhtman. Phys. Rev. B 46, 8, 4769 (1992)
  21. T. Ando, H. Akera. Phys. Rev. B 40, 17, 11619 (1989)
  22. Y. Fu, M. Willander, E.L. Ivchenko, A.A. Kiselev. Phys. Rev. B 47, 20, 13498 (1993)
  23. E.L. Ivchenko, A.Yu. Kaminski, U. Rossler. Phys. Rev. B 54, 8, 5852 (1996)
  24. A.B. Foreman. Phys. Rev. Lett. 81, 2, 425 (1998)
  25. V.L. Alperovich, D.M. Kazantsev, A.G. Zhuravlev, L.D. Shvartsman. Appl. Surf. Sci. 561, 149987 (2021)
  26. D.M. Kazantsev, V.S. Khoroshilov, G.E. Shaibler, V.L. Alperovich. Physics of the Solid State 65, 8, 1219 (2023)
  27. D.B. Tran Thoai, Y.Z. Hu, S.W. Koch. Phys. Rev. B 42, 17, 11261 (1990)
  28. R. Vaxenburg, A. Rodina, A. Shabaev, E. Lifshitz, Al.L. Efros. Nano Lett. 15, 3, 2092 (2015)
  29. A. Shabaev, Al.L. Efros, A.L. Efros. Nano. Lett. 13, 5454 (2013)
  30. L.S. Braginsky. Phys. Rev. B 60, 20, 13970 (1999)
  31. A. Rodina, Al.L. Efros. Nano Lett. 15, 6, 4214 (2015)
  32. A. Rodina, Al.L. Efros, A. Alekseev. Phys. Rev. B 67, 15, 155312 (2003)
  33. J. Gupta, D. Awshalom, Al.L. Efros, A. Rodina. Phys. Rev. B 66, 12, 125307 (2002)
  34. M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications Inc, N.Y. (1992). 1046 p
  35. J.K. Tomfohr, O.F. Sankey. Phys. Rev. B 65, 245105 (2002)
  36. Yu.N. Demkov, V.N. Ostrovsky. Metod potentsialov nulevogo radiusa v atomnoy fizike. LGU, L. (1975), 240 p. (in Russian)
  37. V.M. Galitsky, B.M. Karnakov, V.I. Kogan. Zadachi po kvantovoy mekhanike. Nauka, M., (1992), 879 s. (in Russian)
  38. E.E. Takhtamirov, V.A. Volkov. JETP 89, 5, 1000 (1999)
  39. A. Rodina, A. Alekseev. Phys. Rev. B 73, 11, 115312 (2006)
  40. G.B. Grigoryan, A.V. Rodina, Al.L. Efros. Sov. Phys. Solid State 32, 12, 2037 (1990)
  41. N.A. Efremov, S.I. Pokutnii. Sov. Phys. Solid State 32, 6, 955 (1990). (in Russian)
  42. A.V. Rodina, Al.L. Efros. ZhETF 149, 3, 641 (2016)
  43. L. Banyai, P. Gilliot, Y.Z. Hu, S.W. Koch. Phys. Rev. B 45, 24, 14136 (1992)
  44. N.A. Efremov, S.I. Pokutnii. Sov. Phys. Solid State 32, 10, 1697 (1990). (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru