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Theoretical calculations of electron energy spectrum and wave functions in spherical semiconductor nanocrystals

(NC) surrounded by a dielectric media are presented. The case of high, but finite potential barrier at the NC

surface, i. e. at the boundary between semiconductor and dielectric, is considered with account taken for a large

difference between electron effective mass inside and outside of NC. We argue that within effective mass method

such NC surface can be described as impenetrable for electron with nonvanishing envelope wave functions at the

boundary. General boundary conditions that provide a consistent description of quantum size energy levels of

localized electron states are suggested and the conditions of their applicability are determined. General boundary

conditions are characterized by a single surface parameter that depends only on the height U of the potential

barrier and electron effective mass mB outside NC. We show that the energies of electron levels decrease while the

probability of finding electron at the NC surface increases with increasing mB . The analytical asymptotic expressions

for the dependence of the electron ground state energy on U and mB are obtained.
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1. Introduction

Semiconductor nanocrystals (NC) also known as colloidal

quantum dots became the first low-dimensional semicon-

ductor nanosystem that ensures spatial confinement of

charge carriers in all three directions [1]. Size quantization

spectra in zero-dimensional structures were first studied

for CuCl nanocrystals in a glass matrix [2] and for CdS

nanocrystals in aqueous solution [3]. Theory of absorption

spectra of spherical NC in various size quantization con-

ditions was developed in [4]. Semiconductor NC are now

one of the best investigated low-dimensional semiconductor

nanosystems [1]. High quantum yield and controlled

changing of optical transition energy by the size variation

make the colloidal semiconductor NC highly demanded

in a wide application range [5]: new lasers [6], various

optoelectronic devices [7], quantum computer qubits [8,9].
Semiconductor NC are widely used for biological [10] and
medical [11] purposes.
Many NC applications are associated with the surface

functionalization ability. Modern chemical synthesis makes

it possible to control surface passivation with organic

molecules (ligands) and to replace ligands after synthesis

completion. Experiments show that replacement of ligands

on the NC surface results in variation of optical transition

energies and other observed properties [12]. This creates

a need in a theoretical model to consider the dependence

of electronic states localized inside NC not only on the

semiconductor material properties, but also on the surroun-

ding dielectric medium and NC surface conditions. Using

numerical calculations within the density functional theory

(DFT) as well as the effective mass method analysis, [13]
reported that the length of electron tunneling from two-

dimensional nanoplatelets or spherical nanocrystals into the

organic shell is almost completely determined by ligand

properties.

The effective mass approximation is one of the first

theoretical methods in research of semiconductor het-

erostructures [14,15] and nanocrystals [3,4] with abrupt

boundaries. Advantage of this method compared with

more accurate numerical methods is in effective theoretical

modelling and analysis of physical phenomena. However,

application of the effective mass method to the abrupt

bounded structures requires proper solution of the issue

of boundary conditions at interfaces. Full wave function

representation as an expansion in basic Bloch functions

for one or more energy bands is only possible in the

structure material to the left and right of the boundary

where envelope wave functions (expansion coefficients) and
effective Hamiltonian parameters Ĥ are determined. There-

fore, to apply the effective mass method to abrupt bounded

structures, boundary conditions (BC) shall be formulated

for envelope wave functions. Such boundary conditions

shall ensure self-adjointness of Ĥ that is equivalent to the

continuity of normal component of the probability flow

density vector across the boundary Jn = (Ĵ · n), where n is

the unit normal vector to the boundary surface [16].
For one-band effective mass method in case of finite

potential barrier (e. g. in case of the planar heterostruc-

ture [14,15] or core/shell type spherical system [17]), the
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standard boundary conditions (SBC) stipulate continuity of

the wave function 9 and 9′/me , where ′ is a derivative in

direction n, me is the electron effective mass. Such SBC

are a special case of general boundary conditions (GBC)
assigned using the interface matrix [18]. For the multiband

effective mass method, the similar result was achieved

in [16]. It is essential that SBC are not always applicable to

the multiband method. For example, this is the case when

the Bloch functions vary widely in various materials [19]
or do not exist in the boundary region [20]. Also, SBC

prevent from describing interface effects, e. g. boundary-

induced mixing of states with various symmetries [21–24].
The surface of semiconductor NC surrounded with

dielectric matrix or organic medium, like the semiconduc-

tor/vacuum interface, is often treated as a high impenetrable

barrier for electrons. This corresponds the boundary

condition Jn = 0. Within the one-band method, the

impenetrability condition may be easily fulfilled with the

Dirichlet boundary condition 9 = 0 [4]. However, such

BC prevent from considering the surface properties that

may affect the electron spectrum even in case of high

potential barrier. For example, [25,26] used SBC to consider

the influence of the effective electron mass jump, i. e.

the difference of me to the left and to the right of the

semiconductor/vacuum interface. The effect of mass jump

on the energy of two lower electron levels in spherical NC

with finite potential barrier height was studied in [27], whilst

the inside effective electron mass was fixed and the outside

mass was varied. SBC or GBC, considering the finite,

though high barrier for semiconductor NC surface, are used

in the cases when outflow of the electron wave function

into the matrix shall be explicitly considered (e. g. when

calculating the nonradiative Auger recombination rate [28]
or transport properties of the nanocrystal array [29]). Even
in case of high potential barrier, the envelope electron

wave function at the semiconductor interface has a non-

zero value which is important for description of many

effects caused by the NC surface. For example, such effects

include the surface effect on light absorption in indirect band

gap semiconductor NC [30], exchange interaction between

an electron and dangling bonds on the NC surface [31],
surface-induced spin-orbit interaction and surface contribu-

tion to the electronic magnetic moment [32] localized at the

Tamm state surface.

It should be noted that in case of high potential barrier

at the semiconductor/dielectric interface, SBC may forecast

envelope wave function decay in the barrier at distances

less than of the order of the lattice constant. Since the

effective mass method involves slow variation of envelope

wave functions on the lattice cell scale, then they shall

be assumed equal to zero outside NC and the barrier

shall be treated as impenetrable. However, the flow

disappearance condition Jn = 0 for an impenetrable barrier

does not require vanishing of the envelope wave function

at the NC interface. General boundary conditions for

the impenetrable potential barrier that contain a surface

parameter in addition to volumetric parameters Ĥ were

offered in [16,32]. This parameter has a length dimension

and characterizes the near-surface layer width where the

envelope wave functions are not well defined. Such GBC

may be also used when there is a localizing short-range

potential near the surface where surface Tamm states

may exist [16,32]. In [32,33], surface parameter value

was determined for CdSe NC by means of analysis of

experimentally measured dependence of effective g-factor of
the electron on the NC diameter. However, the application

conditions of GBC offered in [16,32] for the impenetrable

potential barrier and connection between the surface barrier,

potential barrier value and effective electron mass in the

surrounding medium were not studied.

Te purpose of the study is to perform theoretical analysis

and comparison of electron size quantization spectra in

spherical NC with high potential barrier that are calculated

within a one-band effective mass model using both GBC

for the impenetrable barrier and SBC for the finite barrier.

Such comparison makes it possible to define the connection

between the GBC surface parameter, potential barrier height

and effective electron mass in the surrounding matrix, and

the GBC applicability region.

2. Problem formulation

The Schrödinger equation Ĥ9 = E9 for electron states in

spherical nanocrystals after substitution of wave functions as

9(r) = Rl(r)Yl,m(θ, φ), where Yl,m are spherical harmonics

(l is the orbital moment and m is the magnetic quantum

number), becomes one-dimensional.

− 1

r2
d

dr

(

r2
dRl(r)

dr

)

+
Rl(r)

r2
l(l + 1)

− 2me(r)

~2
(V (r) − E)Rl(r) = 0. (1)

Here, V (r) and me(r) describe the dependence of potential

energy and electron mass on distance r from NC center

with radius a :

V (r) =

{

U r > a

0 r ≤ a
, me(r) =

{

mB r > a

mA r ≤ a .
(2)

Whilst the radial component of the wave function Rl(r)
may be also represented as a piece continuous function

Rl(r) =

{

RB
l (r) r > a

RA
l (r) r ≤ a

(3)

and is subject to normalization condition

∫ a

0

r2dr |RA
l (r)|2 +

∫

∞

a
r2dr |RB

l (r)|2 = PA
l + PB

l = 1.

(4)
PA

l and PB
l values are probabilities of finding an electron

inside and outside NC, respectively.
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Standard BC RA
l (a) = 0 in the infinitely high potential

barrier model U → ∞ give the following expression for the

electron energy spectrum

E∞

l,n =
~
2γ2

l,n

2mAa2
=

γ2
l,n

π2
Eq, Eq =

~
2π2

2mAa2
. (5)

where γl,n is the n-th root of the l-the order spherical Bessel
function. To study the effect of the difference of effective

electron masses mA and mB inside and outside NC with

an arbitrary potential barrier height U , electron energies

El,n and radial wave functions Rl,n(r) will be calculated

for four lower size quantization levels with l = 0 (n = 1, 2),
l = 1 (n = 1) and l = 2 (n = 1) using standard boundary

conditions.

RA
l (r)

∣

∣

r=a
= RB

l (r)
∣

∣

r=a
,

1

mA

dRA
l

dr

∣

∣

∣

r=a
=

1

mB

dRB
l

dr

∣

∣

∣

r=a
.

(6)
Special focus will be made to the spectra variation with an

increase in relative barrier height U/Eq and a decrease in

effective mass ratio inside and outside NC µ = mA/mB .

For the impenetrable potential barrier corresponding to

the range of values U/Eq ≫ 1, we will consider the general

boundary conditions offered in [16,32] in a restated form

RA
l (r)

∣

∣

r=a
= −mB

mA
A
dRA

l

dr

∣

∣

∣

r=a
, RB

l (r > a) = 0. (7)

Here, A is the parameter that has a length dimension and

does not depend on a , l and n. Comparison of spectra

and wave functions calculated using SBC (6) and GBC (7)
will allow the connection between A and potential barrier

parameters U and mB to be found and the GBC applicability

region (7) to be determined to describe size-quantized

electron states in NC with the impenetrable barrier.

3. Energy spectrum and wave functions
with SBC

3.1. Energy level equations

Wave functions corresponding to the solution of equa-

tion (1) are written as

RA
l (r) = Cl2k l j l(k lr), RB

l (r) = ClBl̹lh
(1)
l (i̹lr), (8)

where wave numbers k l and ̹l are related to the level

energy El as

El =
~
2k2

l

2mA
, U − El =

~
2̹2l
2mB

, (9)

j l(k lr) and h(1)
l (i̹lr) are spherical Bessel and Hankel

functions, respectively [34]. Cl is defined by normalization

condition (4). Substituting wave functions (8) into the first

BC from (6) gives the following constant

Bl =
2k l j l(k la)

̹lh
(1)
l (i̹la)

, (10)

and substituting (8) and (10) into the second BC from (6)
reduces to equations for energy level calculation

l = 0 : tan(k0a) =
k0a

1− µ(1 + ̹0a)
≡ F0(k0a, ̹0a, µ),

l = 1, 2 : tan(k la) = Fl(k la, ̹la, µ). (11)

Explicit expressions for Fl(k la, ̹la, µ) for l = 1, 2 are given

in Appendix 1A. For simplification of the formula, the

quantum number n that defines the level number with

assigned value l is omitted in the equations above.

3.2. Dependence of energy levels on the barrier
height and effective mass ratio

Calculation of El,1 s -, p- and d-symmetry energy levels

(l = 0, 1, 2) with SBC according to the potential barrier

height U in terms of Eq are shown in Figure 1, a. As

shown in the figure, with decreasing mass ratio µ = mA/mB ,

El values increasingly deviate from asymptotic values E∞

l
that satisfy U → ∞. Energy levels are limited by dot-

and-dash line El = U to the right of which there are no

localized electron states of this symmetry with energy below

the potential barrier. It is convenient to express critical

heights of the localizing potential barrier for each level as a

condition on the quantum well power wu ≤ wl,n, where

wu = a

√

2mAU
~2

= kua . (12)

Critical values of wl,n are obtained from equations

l = 0 : w0,n cot(wl,n) = 1− µ ≡ W0(µ),

l = 1, 2 : wl,n cot(wl,n) = Wl(µ,wl,n), (13)

that are derived from (11) when substituting k l,n = ku and

̹l = 0 for El,n = U . Explicit expressions for Wl(µ,wl,n) for

l = 1, 2 are given in Appendix 2A.

Figure 1, b shows dependence wl,n on the mass ratio

µ. For µ = 1, delocalization of s -symmetry levels takes

place when the spherical quantum well power is lower than

w0,n = π(n − 1/2). For ground state n = 1, this condition

coincides with the known condition for the critical depth of

3D-potential that allows electronic localization at U higher

than Ucr = Eq/4. However, the high effective electron

mass in the matrix compared with the electron mass in

the semiconductor (µ < 1) allows electronic localization in

the NC core at lower w0,n < π(n − 1/2). Delocalization of

electron with orbital moments l = 1, 2 for µ = 1 occurs at

wl,n = γl−1,n. With decreasing µ, critical well powers also

decrease.

Figure 2 shows the energy spectrum variation (energies
of four lower electron levels in terms of Eq) from the

effective mass ratio µ at fixed dimensionless potential

U/Eq = 20 (Figure 2, a) and at fixed dimensionless po-

tential U/EB
q = 200 (Figure 2, b), where EB

q = µEq . The

calculated dependences are invariant to the method of
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Figure 1. (a) Dependence of El,1 on U with various µ values for orbital moments l = 0, 1, 2 with SBC (6). Horizontal dashed lines

correspond to asymptotic energy values E∞

l,n . Energies are expressed in terms of Eq . (b) Dependence of critical values of spherical

quantum well powers wl,1 (l = 0, 1, 2) and w0,2 on the effective mass ratio µ. Horizontal dashed lines correspond to asymptotic energy

values at µ = 1.
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Figure 2. Energy spectrum evolution depending on mass ratio µ in universal coordinates that give similar energies for two mass variation

methods. Energies are measured in terms of Eq, dimensionless potential height is fixed as U/Eq = 20 and U/EB
q = 200 (EB

q = µEq) in

panes (a) and (b), respectively. Horizontal dashed lines correspond to asymptotic energy values E∞

l,n . The energy spectrum was calculated

with SBC (6) (dot-and-dash lines) and GBC (7) (thick solid lines).

µ variation, i. e. increase of the mB or decrease of

the mA. µ = 1 in panel (b) corresponds to a higher

potential U/Eq = U/EB
q = 200 than in panel (a), which

causes higher electron energies. It should be noted that,

though dimensionless energy El,n/Eq in terms of Eq always

decreases with a decrease in µ, behavior of the absolute

level energy dependence El,n varies depending on the varied

mass. Thus, at fixed mass mA inside NC and increase

in mB/m0 → +∞, where m0 is the free electron mass,

absolute energies El,n decrease. However, the absolute
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Figure 3. (a) Energy spectrum evolution for two methods of µ variation: variation of mA inside NC at fixed mB = m0 (dot-and-dash
lines) and variation of mB outside NC at fixed mA = 0.1m0 (solid lines). The calculation was performed at fixed potential barrier height

U/E0
q = 200 using SBC (6) (thin lines) and GBC (7) (thick lines); horizontal dashed lines correspond to asymptotic energies E∞

l,n .

(b) Dependences of the dimensionless density of probability of finding an electron at distancer from the center of NC with radius a
for three levelsl = 0, 1, 2 (n = 1) calculated with SBC (6) (solid lines) and GBC (7) (dashed lines) in case of high potential barrier

U/E0
q = 200 and effective masses mA = 0.1m0 and mB = m0 (µ = 0.1).

potential barrier height U in Figure 2, a remains constant

and decreases in Figure 2, b. On the contrary, at fixed mB

and mA/m0 → 0, energies El,n grow, though slower than Eq .

As will be shown below, for the ground state l = 0, E0,0

always has a finite value at mA/m0 → 0 and is defined by

mass mB .

It is interesting also to follow the impact of the effective

electron mass difference on the energy level position relative

to the constant potential barrier U which is independent

on the effective masses inside NC and in the dielectric

medium. Figure 3, a shows dependences of the energy

spectrum on the mass ratio at the fixed potential barrier

U/E0
q = 200 (where E0

q = EqmA/m0) for two variation

methods µ = mA/mB . For fixed mA = 0.1m0, spectrum

behavior with increasing mB coincides with that shown

in Figure 2, a. At the same time, for fixed mB = m0,

spectrum behavior with decreasing mA coincides with that

shown in Figure 2, b. It is shown that at fixed potential

barrier U/E0
q , energies are different at the same mass ratio

µ implemented at different mA and mB values. For example,

µ = 1 in Figure 3, a is implemented at mA = mB = 0.1m0

and mA = mB = m0. However, an increase in mass outside

NC results in a decrease in level energy El,n relative to

the barrier height, and a decrease in mass mA inside

NC results in an increase. µ = 0.1 is implemented at

mA = 0.1m0 and mB = m0 (the situation typical for the

semiconductor/vacuum or semiconductor/dielectric inter-

face), whilst deviations of El,n from asymptotic E∞

l,n for the

potential barrier are considerable and may not be considered

any longer as small corrections within the perturbation

theory.

3.3. Probability of electron detection on the NC
surface and outside NC

The effect of potential barrier parameters on the radial

electron wave function behavior Rl(r) is described below.

Figure 3, b shows the distribution of the dimensionless pro-

bability density a3|Rl(r)|2 at U/E0
q = 200 and mA = 0.1m0,

mB = m0 (µ = 0.1). The typical tunneling length of the

wave function beyond the NC boundaries may be estimated

as ≈ 1/̹l,n . However, as shown in (9) [see also Figure 3, b],
with high potential barrier U ≫ El,n, this length is much the

same for all described levels and is equal to the effective

length B that depends only on external parameters, i. e. the

mass inside the potential barrier mB and the potential barrier

height U :

B =

√

~2

2mBU
. (14)

For the high potential barrier and large effective electron

mass outside NC, B is of the order of the lattice constant.

In this case, description using envelope wave functions

outside NC is, strictly speaking, not applicable. For

the wave functions shown in Figure 3, b, for example,

B/a ≈ 0.0225. For NC with a diameter of 5 nm, this
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Figure 4. Dependence (a) of the dimensionless electron density a3|R l(r = a)|2 at the NC boundary and (b) electron localization

probability PB
l outside NC on µ: with variation of mA inside NC at fixed mB = m0 (dot-and-dash line) and for mass variation outside

NC mB at fixed mA = 0.1m0 (solid line). The calculation uses the fixed potential barrier height U/E0
q = 200 for three levels l = 0, 1, 2

(n = 1).

corresponds to B ≈ 0.06 nm. Such order of the tunneling

length is typical for NC surrounded with ligands. As shown

in [13], the tunneling length from CdSe nanoplatelets to

the organic ligand shell does not exceed 0.15 nm at the

effective mass in the shell mB = 1.255m0 (µ ≈ 0.1) and

potential barrier height U of the order of 1−2 eV. The

wave function overlap integral between two nanocrystals

decreases with increasing distance between them with

the typical length ≈ 1/2̹l,n ≈ B/2 in the limiting case

of high potential barrier [13]. High potential barriers

of the order of 10 eV may be formed in case of sur-

face passivation with alkane chain type organic com-

pounds [35].
However, it should be noted that the boundary condition

of envelope wave function vanishing at the NC boundary in

model U → ∞ is also not applicable to small µ. Actually,

Figure 3, b clearly shows that the dimensionless probability

density a3|Rl(a)|2 for electron detection at r = a , in

particular for excited states, is comparable with the values

inside NC for µ = 0.1. Dependence a3|Rl(r = a)|2 on µ

at constant U/E0
q = 200 for two methods of µ variation is

shown in Figure 4, a.

We consider the electron detection probability variation

PB
l =

∞
∫

a

r2dr |RB
l (r)|2

outside NC shown in Figure 4, b for two variation methods

of µ. In case of a constant mass mA = 0.1m0 inside NC,

the probability PB
l initially grows a little with increasing

mB from 0.1 m0 to m0, and then drops significantly with

further growth of the mass outside the barrier. Nonmono-

tonical dependence is caused by the competition of two

factors — probability density growth at the NC boundary

and simultaneous decrease of the outflow length B with

increasing mB . In the second case of constant mass mB ,

probability of electron tunneling beyond the NC boundary

grows with decreasing mA. Whilst for the parameters at

which the energy level localization conditions El < U are

met, PB
l < 0.08.

4. Results: Energy spectrum and wave
functions when with GBC

4.1. Determining the surface parameter and GBC

applicability region

Consider the reproducibility of results obtained with

SBC (6) for the high potential barrier case with GBC (7).
First, estimate A in equation (7) using El,n found with SBC

and substituting k l,n values corresponding to them into the

wave functions Rl(r) determined inside NC at r = a . For

each energy level, find Al,n from (7) as

Al,n = −µ
RA

l (a)

RA′

l (a)

=
mA

mB

j l(k l,na)

k l,n [ j l−1(k l,na) − j l(k l,na)(l + 1)/(k l,na)]
,

(15)

Physics of the Solid State, 2024, Vol. 66, No. 1



General boundary conditions for envelope wave functions at semiconductor nanocrystals surface 113

0.05

0.10

0

A
/a

l, 
n

0.15

0.29

a

B/a
0 0.05 0.10 0.15 1.00.20

b

0.25

0.1

0.2

0
B

/a

0.3

0.4

µ

0 0.2 0.4 0.6 1.00.8

0.5

l = 0;

l = 1

l = 2

l = 0;

A = B

µ = 0.1

0.6

Figure 5. (a) Dependence of the dimensionless GBC parameter Al,n/a on B/a for four lower electron levels at various µ values. Dashed

line shows the linear dependence A/a = B/a . (b) — GBC applicability region with A = B on the B/a and µ plane: solid lines —
dependences Bcr

l,n(µ) that set prerequisite B/a < Bcr
l,n for electron state localization; dot-and-dash lines — dependences B l,n(µ) according

to approximations B0,1 = 0.250
√
µ + 0.133µ + 0.002, B1,1 = 0.067

√
µ + 0.097µ + 0.004, B2,1/a = 0.026

√
µ + 0.082µ + 0.005 and

B0,2/a = 0.042
√
µ + 0.037µ + 0.001 that set sufficient condition B/a ≤ B l,n(µ)/a for description of electron states with accuracy at

least 6%.

where ′ means the spatial derivative. For U/E0
q = 200,

mA = 0.1m0 and mB = m0, we obtain

A0,1/a = 0.0223; A1,1/a = 0.0227;

A2,1/a = 0.0233; A0,2/a = 0.0237.

Thus, Al,n/a ≈ A/a ≈ B/a for all described electron states.

Condition Al,n/a ≈ A/a ≈ B/a may be considered as

a sufficient condition for finding the spectrum and elec-

tron wave functions for states with quantum numbers

l′ = 0, 1, . . . l, n′ = 1, . . . n when using GBC (7) with

surface parameter A = B . The existence of localized states

El,n < U is the prerequisite. This condition is satisfied for

B/a < Bcr
l,n/a =

√
µ/wl,n, where wl,n are critical quantum

well powers [see Figure 1, b]. Fulfilment of the level

localization prerequisite makes it possible to neglect the

probability of finding an electron outside NC that, as shown

in Figure 4, a, increases at low µ.

Now consider dependences of Al,n/a on B/a as shown in

Figure 5, a for four lower electron levels found with SBC. It

is shown that when µ decreases, the region of coincidence

of all Al,n/a ≈ A/a = B/a is also changed, i. e. the region

of sufficient condition for GBC application. However, this

region is always inside the region of B/a < Bcr
l,n/a that is

responsible for the level localization prerequisite. Assume

the region of B/a ≤ B l,n/a as the GBC applicability region,

when all Al,n values at specified µ deviate from B/a by

max. 6%. In Figure 5, b, dot-and-dash lines show the

calculated approximations for dependences of B l,n/a on µ

describing the GBC applicability region for the spectrum

from lower s , p and d levels l = 0, 1, 2, (B l,1) and including

the excited s level l = 0, n = 2 (B0,2). Solid lines show

dependences of Bcr
l,n/a on µ.

4.2. Energy level equations

Now derive the equations for electron energy calculation

with GBC (7). Wave functions are written as (8), where

Bl = 0, and C l is found from normalization condition (7)
that reduces to PA

l = 1.

Equations for determining energy levels with GBC (7)
are written as

l = 0 : tan(k0a) = k0a
A

A − µa
≡ f 0(k0a, Ã),

l = 1, 2 : tan(k la) = f l(k la, Ã), Ã =
A
a
1

µ
. (16)

Explicit form of f l is shown in Appendix 1A. Limiting

transition El,n → E∞

l,n at Ã → 0 obviously takes place. Level

energies El,n found using GBC (7) with A = B coincide

with those found earlier using SBC with accuracy at least

6% provided that B/a ≤ B l,n/a . Dependence of four

lower energy levels on µ for U/Eq = 20, U/EB
q = 200 and

U/E0
q = 200 are shown by light thick lines in Figure 3, a, re-

spectively. Wave function found with GBC for U/E0
q = 200,

mA = 0.1m0, mB = m0 are shown by dark dashed lines

in Figure 3, b.
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5. Discussion of results: effect of the
impenetrable NC surface on the
electron energy spectrum

Thus, comparison of energies and wave functions for four

electron states found with SBC (6) and GBC (7) made

it possible to define the potential barrier parameter region

where the barrier may be represented as impermeable. The

only GBC surface parameter contains the details of the

barrier parameters: potential barrier height and effective

electron mass outside NC. Therefore the effect of the

dielectric medium that surrounds NC on the energy levels

may be described even in the impenetrable potential barrier

model. Though the size quantization energies are primarily

defined by the electron mass mA inside NC, an increase in

the electron mass mB in the dielectric medium results in

decrease in the electron energy levels. On the other side,

the energy levels increase slower with decreasing mA than

E∞

l ∝ 1/mA, because the dimensionless energies El,n/Eq

decrease with decreasing µ = mA/mB .

The obtained analytical expressions for the energy spec-

trum with GBC are simpler than in case of SBC and make

it possible to find analytical asymptotic behavior of the

energy levels in limiting cases. µ → 0 case corresponds

to Ã → +∞ case at A/a 6= 0 and may be considered for

small surface parameter values satisfying A/a < B l,n(µ)/a
[see Figure 5, b]. In this case, for symmetry levels s -, we
obtain

lim
Ã→+∞

f 0(k0a, Ã) = k0a . (17)

Asymptotic expressions for f l are given in

Appendix 1A. Dimensionless excited state energies

E0,2/Eq = E∞

1,1/Eq ≈ 2.046, E1,1/Eq ≈ 0.439 and

E2,1/Eq ≈ 1.132 have their finite values at µ → 0.

Though Eq goes to infinity at mA/m0 → 0, excited state

energy levels are always below the potential barrier U .

The electron ground state is described in more detail be-

low. Within µ → 0, the dimensionless energy E0,1/Eq → 0.

Show that the absolute energy within this boundary remains

non-zero and the order of levels with orbital moment

l = 0, 1, 2 is maintained. By expanding the left-hand side of

equation (16) into the Taylor’s series in a small parameter

k0a near point µ = 0 and the right-hand side in a small

parameter 1/Ã = µa/A, we obtain the energy expression

E0,1

Eq
≈ 3

π2

1

Ã
⇒ E0,1 ≈ 3

√

~2U
2mB a2

. (18)

Expression (18) shows that the ground state energy E0,1

depends only on the potential barrier parameters (barrier
height and electron mass in the barrier) and has a non-

zero value even at mA/mB → 0. Applicability region

of the obtained expansion is limited by very small µ

values, at which 1/Ã = µa/B ≪ 1 may be assumed as

small in the GBC applicability region for the ground state

B/a < B0,1(µ)/a .

Now consider the deviation of the ground state energy

E0,1 from E∞

0,1 = Eq near µ = 1 for high potential barriers

U/Eq ≥ 1. By expanding the left-hand side of equation (16)
in small 1− E0,1/Eq and using smallness Ã ≪ 1, we obtain

E0,1

Eq
≈ 1

(

Ã
[

Ã + 1
]

+ 1
)2

⇒ E0,1

≈ ~
2π2

2mAa2

[

1 +

√

~
2mB

2m2
AUa2 + ~

2mB
2m2

AUa2

]2
. (19)

Comparison of dependences E0,1/Eq on µ and U/Eq

analytically calculated using expressions (18) and (19)
with dependences obtained numerically with SBC and

GBC is shown in Figure 6. It is shown that asymptotic

expression (18) for µ → 0 the better describes the energy

dependence on µ the lower the relative barrier height U/Eq .

In case of high potential barrier U/Eq = 20, it is only

applicable at µ < 0.005. On the contrary, expression (19)
is applicable to high potential barriers. For example,

for U/Eq = 20, expression (19) satisfactorily describes the

energy dependence on µ in a wide range of 0.03 < µ ≤ 1

values.

Find the connection between A introduced by us

into (7) with ac introduced in [32] within the eight-

band Kane model. By neglecting the dependence of

the effective electron mass inside NC on the energy we

obtain ac = −AmB/m0. Using the experimental estimate

of ac = −0.06 nm for CdSe nanocrystals from [32,33] and
assuming mB = m0, the potential barrier height may be

estimated as U ≈ 10 eV. It should be noted that, when

the potential barrier height U and effective electron mass

mB outside NC are known, GBC (7) with surface pa-

rameter A or GBC for the eight-band Kane model with

ac = −AmB/m0 make it possible to find the electron state

spectrum and wave functions inside NC. However, for the

shell formed by organic ligands [12], the potential barrier

height and effective mass are not always known. In this

case, ac shall be treated as a parameter characterizing the

surface properties and supplementing the set of known

parameters of a bulk semiconductor. ac may be determined

by comparison with experimental data, for example, as

in [32,33].
It should be noted that the GBC surface parameter in the

described model is always positive: A = B > 0 and ac < 0.

In such case, the GBC spectrum, like the SBC spectrum,

does not contain surface Tamm states with energy in the

band gap [16,32]. Such states may be obtained in the finite

potential barrier model with addition of 2αRB/~
2 to the

right-hand side of the second condition in SBC (6). Such

BC describes the presence of zero-radius attractive potential

in the form of −αδ(r − a) at the heteroboundary [36,37].
A short-range potential may occur, for example, in transition

from a multiband to one-band effective mass method [38]
and when considering a narrow transition interface layer

between layers A and B, where concepts of effective mass
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Figure 6. Dependences of the dimensionless ground state energy E0,1/Eq (a) on the potential barrier height U/Eq at three different µ,

and (b) on µ for three different U/Eq . Calculations using SBC (solid lines), GBC (light thick lines), asymptotic expressions (18) (brown
dot-and-dash line) and (19) (dot-dot-and-dash line) are shown. Pink dot-and-dash line in pane (a) shows the bound state existence region

boundary; dashed lines correspond to E∞

0,1.

and envelope wave function are not defined [39]. α defines

the short-range interface potential power, attractive (α > 0 )
or repulsive (α < 0). In case of attractive potential, interface

Tamm states with band gap energy may exist. Such states

are not discussed in this article.

According to the calculations and analytical study, con-

siderable difference in the effective electron masses inside

and outside the semiconductor NC typical for dielectric

environment results in reduction of the electron size

quantization levels. On the other hand, the effect of the

dielectric constant difference inside a semiconductor and

in the surrounding matrix, for example, in an organic

ligand shell, is a feature of semiconductor NC in the

dielectric medium that was not considered by us when

determining the electron spectrum [12]. This difference

results in strengthening of the Coulomb interaction between

the carriers and to an increase in the level energy as a

result of electric field penetration beyond NC even in case

of infinite potential barrier [40–42]. Whilst consideration

of the dielectric constant difference in the image charge

method results in self-interaction electron potential going

to infinity with a decrease in the distance to the NC

surface. This, in turn, requires potential regularization in

case of finite potential barrier for the electron [3,43,44].
Estimates obtained in this article for the relative length

of wave function tunneling to the barrier B/a , at which

the energy spectrum may be described with GBC, provide

approximate assessment of the surface layer thickness where

self-interaction potential regularization is necessary.

Possible experimental manifestations of the impact of the

effective electron mass difference on the energy spectrum

and wave functions are discussed below. In spherical

NC, effects caused by the dielectric constant difference

compensate each other and do not influence the exciton

optical absorption energy. Therefore, even when the

additional electron self-interaction energy corresponding to

repulsion from the charge image is comparable with a

decrease in the level energy caused by the effective mass

difference, the last effect will influence the optical transition

energy. In addition, the effective mass difference influences

the difference of energies of symmetry levelss and p that

may be determined by comparing single-photon and two-

photon absorption spectra. When the electron mass outside

NC increases, the probability of finding an electron on the

surface also increases. This shall result in strengthening

of electron/surface interaction, including an increase in the

exchange interaction constant with dangling bonds with

incomplete surface passivation and shall be manifested in

the effects caused by the surface-induced magnetism.

6. Conclusion

Spherical semiconductor nanocrystals in dielectric

medium or vacuum discussed in this article. It is shown

that the high potential barrier at the semiconductor/dielectric

interface may be treated as an impenetrable barrier with

non-zero wave function at the nanocrystal surface. General

boundary conditions with a surface parameter that explicitly
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depends on the potential barrier and effective electron

mass in the dielectric medium are established herein. The

applicability region of general boundary conditions was

defined, i. e. the potential barrier and nanocrystal parameter

region where consistent description of energy spectrum and

wave functions for four lower electron size quantization

levels is possible. The influence of the electron mass in

the dielectric medium on the energy spectrum and wave

functions of electrons localized in NC was analyzed and

possible experimental observation of such influence was

discussed.

The developed method of determining the GBC and

surface parameter applicability region is general and may

be extended to the eight-band effective mass model taking

into account the complex valence band structure. Such

generalization is required to apply our impermeable NC

surface model to a wider range of semiconductor materials.

The question about the connection between the GBC pa-

rameter in the impenetrable surface model and the general

BC parameters for the finite potential barrier remains open.

The latter make it possible to consider the surface properties

additional to the barrier height and effective mass beyond

the barrier and to describe possible presence of surface

Tamm states.

Appendix

1A. Equations for energy spectrum

With SBC:

tan(k0a) =
k0a

1− µ(1 + ̹0a)
≡ F0(k0a, ̹0a, µ),

tan(k1a) =
k1a

1 +
k2
1
a2(̹1a+1)

µa2̹2
1
+2(̹1a+1)(µ−1)

≡ F1(k1a, ̹1a, µ),

tan(k2a) =
k2a

1− k2
2
a2

3

[

1 +
k2
2
a2

9−k2
2
a2

−3µ

(

3+
̹2
2
a2(̹2a+1)

̹2
2
a2+3̹2a+3

)

]

≡ F2(k2a, ̹2a, µ). (A1)

With GBC:

tan(k0a) =
k0a

1− 1

Ã

≡ f 0(k0a, Ã),

tan(k1a) =
k1a

1− k2
1
a2

2−
1

Ã

≡ f 1(k1a, Ã),

tan(k2a) =
k2a









1− k2
2
a2

3−
k2
2
a2

3−
1

Ã









≡ f 2(k1a, Ã). (A2)

Limiting transition:

lim
Ã→+∞

f 0(k1a, Ã) = k0a,

lim
Ã→+∞

f 1(k1a, Ã) =
k1a

1− k2
1
a2

2

,

lim
Ã→+∞

f 2(k1a, Ã) =
k2a

1− k2
2
a2

3

[

1 +
k2
2
a2

9−k2
2
a2

] . (A3)

2A. Equations for critical power of spherical
quantum well

Expression for w0,n will be written as

w0,n cot(w0,n) = 1− µ ≡ W0(µ). (A4)

At µ = 1, the electron localization occurs when

w0,n = π(n − 1/2).
Expression for w1,n will be written as

w1,n cot(w1,n) =
w2

1,n + 2(µ − 1)

2(µ − 1)

= 1−
w2

1,n

2(1− µ)
≡ W1(µ,w1,n). (A5)

At µ = 1, the electron localization occurs when w1,n = πn.
Expression for w2,n will be written as

w2,n cot(w2,n) = 1−
w2

2,n

3

[

1 +
w2

2,n

9(1− µ) −w2
2,n

]

= 1−
3w2

2,n(1− µ)

9(1− µ) −w2
2,n

≡ W2(µ,w2,n).

(A6)
At µ = 1, equation (A6) coincides with the equation for

spherical Bessel function roots j1.
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