EPR spectroscopy and partial orientation ordering of formyl radicals stabilized in CO and Ar polycrystals at helium temperatures
Dmitriev Yu. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: dmitriev.mares@mail.ioffe.ru

PDF
EPR spectra of formyl radicals DCO and HCO stabilized in solid CO and Ar, respectively, were recorded and investigated. The radicals were obtained by gas condensation on a substrate at the liquid helium temperatures. Partial orientation ordering of the radicals in the polycrystal matrices was revealed using spectrum simulation. In the carbon monoxide solid, the C=O bond of the formyl radical was directed parallel to the deposition surface of the substrate and, at the same time, perpendicular to a plane formed by the gas flows. In the Ar matrix, such a preferred direction was the normal to the deposition surface. Thus, observed for the first time with the stabilized formyl radicals, the partial ordering was estimated to be 4% and 17%, for the DCO/CO and HCO/Ar systems, respectively. Keywords: electron paramagnetic resonance, matrix isolation, cryodeposits, formyl radical, powder spectrum, partial orientation ordering.
  1. J. Zeng, L. Cao, M. Xu, T. Zhu, J.Z.H. Zhang. Nat. Commun., 11 (11), 5713 (2020). DOI: 10.1038/s41467-020-19497-z
  2. M. A. Hanif, F. Nadeem, I.A. Bhatti, H.M. Tauqeer. Environmental chemistry: a comprehensive approach (John Willey \& Sons, 2020)
  3. T. Butscher, F. Duvernay, G. Danger, R. Torro, G. Lucas, Y. Carissan, D. Hagebaum-Reignier, T. Chiavassa. Mon. Not. R. Astron. Soc., 486 (2), 1953 (2019). DOI: 10.1093/mnras/stz879
  4. N.J. Labbe, R. Sivaramakrishnan, C.F. Goldsmith, Y. Georgievski. J. Phys. Chem. Lett., 7 (1), 85 (2106). DOI: 10.1021/acs.jpclett.5b02418
  5. F.J. Adrian, E.L. Cochran, V.A. Bowers, J. Chem. Phys., 36 (6), 1661 (1962). DOI: 10.1063/1.1732794
  6. Yu.A. Dmitriev, A. Laaksonen, N.P. Benetis. AIP Advances, 10, 125309 (2020). DOI: 10.1063/5.0027835
  7. S.V. Ryazantsev, D.A. Tyurin, V.I. Feldman, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 187, 39 (2017). DOI: 10.1016/j.saa.2017.06.018
  8. Yu.A. Dmitriev. Opt. i spektr., 130 (12), 1803 (2022) (in Russian). DOI: 10.21883/OS.2022.12.54084.3712-22
  9. Yu.A. Dmitriev, I.A. Zelenetckii, N.P. Benetis. Physica B: Condensed Matter, 537, 51 (2018). DOI: 10.106/j.physb.2018.01.045
  10. N.V. Krainyukova, B. Kuchta. J. Low Temp. Phys., 187 (1-2), 148 (2017). DOI: 10.1007/s10909-016-1717-3
  11. T. Kiljunen, E. Popov, H. Kunttu, J. Eloranta. J. Phys. Chem. A, 114 (14), 4770 (2010). DOI: 10.1063/1.2715589
  12. N.P. Benetis, Yu.A. Dmitriev, F. Mocci, A. Laaksonen. J. Phys. Chem. A, 119 (35), 9385 (2015). DOI: 10.1021/acs.jpca.5b05648
  13. G. Buscarino, A. Alessi, S. Agnello, B. Boizot, F.M. Gelardi, R. Boscaino. Phys. Chem. Chem. Phys., 16 (26), 13360 (2014). DOI: 10.1039/C4CP01499E
  14. Y.A. Dmitriev, G. Buscarino, N.P. Benetis. J. Phys. Chem. A, 120 (31), 6155 (2016). DOI: 10.1021/acsjpca.6b04119
  15. R.E. Asfin, M.V. Buturlimova, T.D. Kolomiitsova, I.K. Tokhadze, K.G. Tokhadze, D.N. Shchepkin. Opt. i spektr., 128 (10), 1478 (2020) (in Russian). DOI: 10.21883/OS.2021.09.51337.2140-21
  16. Yu.A. Dmitriev, N.P. Benetis. J. Phys. Chem. A, 122 (49), 9483 (2018). DOI: 10.1021/acs.jpca.8b09478
  17. Yu.A. Dmitriev. Opt. i spektr., 129 (9), 1129 (2021) (in Russian). DOI: 10.21883/OS.2021.09.51337.2140-21
  18. E.G. Boguslavsky, A.M. Danilenko, V.A. Nadolinny. Chemistry for Sustainable Development, 8, 21 (2000)
  19. Obrazovanie i stabilizatsiya svobodnykh radikalov, pod red. A. Bassa i G. Broida (Izd. Inostrannoi literatury, M., 1962), gl. 9 (in Russian)
  20. S.S. Dalal, D.M. Walters, I. Lyubimov, J.J. de Pablo, M.D. Ediger. PNAS, 112 (14), 4227 (2015). DOI: 10.1073/pnas.1421042112
  21. N.F. Yudanov, E.G. Boguslavsky, I.I. Yakovlev, S.P. Gabuda. Izv. AN SSSR. Ser. Khim., 2, 272 (1988)
  22. A.Kh. Vorobiev, T.S. Yankova, N.A. Chumakova. Chem. Phys., 409, 61 (2012). DOI: 10.1016/j.chemphys.2012.10.006
  23. R.A. Zhitnikov, Y.A. Dmitriev. Astron. Astrophys., 386 (3), 1129 (2002). DOI: 10.1051/0004-6361:20020268
  24. C.A. McDowell, H. Nakajima, P. Raghunathan. Canad. J. Chem., 48, 805 (1970). DOI: 10.1139/v70-130
  25. M. Beckendorf, U.J. Katter, T. Risse, H. Schlienz, H.-J. Freund. J. Phys. Chem., 100 (22), 9242 (1996). DOI: 10.1021/jp9522627
  26. J.C. Tait. Electron paramagnetic resonance studies of matrix isolated inorganic radicals, A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of philosophy (Department of Chemistry, The University of British Columbia, Vancouver, March 1974). DOI: 10.14288/1.0061090
  27. L.B. Knight, B.W. Gregory, S.T. Cobranchi, F.W. Williams, X.Z. Qin. J. Am. Chem. Soc., 110 (2), 327 (1988). DOI: 10.1021/ja0021a001
  28. L.B. Knight, Jr., W.C. Easley, W.W. Weltner, Jr. J. Chem. Phys., 54 (4), 1610 (1971). DOI: 10.1063/1.1675061
  29. F.J. Adrian, J. Bohandy, B.F. Kim. J. Chem. Phys., 44 (9), 3805 (1984). DOI: 10.1063/1.448182
  30. D. Bhattacharya, H.-Y. Wang, J.E. Willard. J. Phys. Chem., 85 (10), 1310 (1981). DOI: 10.1021/j150610a009
  31. S.V. Ryazantsev, D.A. Tyurin, V.I. Feldman. Spectrochim. Acta, Part A, 187, 39 (2017). DOI: 10.1016/j.saa.2017.06.018
  32. L.J. van Ijzendoorn, L.J. Allamandola, F. Baas, J.M. Greenberg. J. Chem. Phys., 78 (12), 7019 (1983). DOI: 10.1063/1.444745
  33. P.V. Zasimov, E.V. Sanochkina, D.A. Tyurin, V.I. Feldman. Phys. Chem. Chem. Phys., 25 (6), 4624 (2023). DOI: 10.1039/D2CPo5356J

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru