Physics of the Solid State
Volumes and Issues
Magnetic and Magnetocaloric Properties of Y(Co1-xFe_x)2 (x=0.12-0.20) and Lu(Co0.84Fe0.16)2 Compounds
Anikin M. S.1,2, Tarasov E. N.1,2, Zinin A. V.1,2, Kudrevatykh N. V.1,2, Neznakhin D. S.1,2, Semkin M. A.1,2,3, Knyazev M. I.1,2, Selezneva N. V.1,2, Andreev S. V.1,2
1Institute of Natural Sciences &
2Mathematics, Ural Federal University, Ekaterinburg, Russia
3Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
Email: maksim.anikin@urfu.ru

PDF
To clarify the nature of the anomalously high magnetocaloric effect at low temperatures in the RMe2 Laves type phases with "non-magnetic" rare-earth ions (R=Y or Lu) and 3d elements of the Fe group (Me=Fe, Co), the Y(Co1-xFe_x)2 (x=0.12-0.20) and Lu(Co0.84Fe0.16)2 compositions have been synthesized and their magnetic and magnetocaloric properties were investigated (isothermal magnetic entropy change Δ Sm and adiabatic temperature change Δ Tad). It has been established that the iron concentration increases and/or Y by Lu replacement with unchanged Co : Fe ratio gives rise in the energy of the d-d exchange interaction, which is followed by an increase in the Curie temperature value as well as by the low-temperature anomaly shift on the Δ S_m(T) dependence to a higher temperatures range. Keywords: magnetocaloric effect, adiabatic temperature change, magnetic moments, Laves phase, Curie temperature, mictomagnetism.
  1. M.S. Anikin, E.N. Tarasov, N.V. Kudrevatykh, A.A. Inishev, A.V. Zinin. Met. Sci. Heat Treatment 60, 7--8, 522 (2018). https://doi.org/10.1007/s11041-018-0312-4
  2. E. Burzo, I.G. Pop, D.N. Kozlenko. J. Optoelectron. Adv. Mater. 12, 5, 1105 (2010)
  3. M.S. Anikin, E.N. Tarasov, N.V. Kudrevatykh, D.S. Neznakhin, M.A. Semkin, N.V. Selezneva, S.V. Andreev, A.V. Zinin.J. Phys.: Condens. Matter 33, 27, 275801 (2021). https://doi.org/10.1088/1361-648X/abfc17
  4. M.S. Anikin, E.N. Tarasov, D.S. Neznakhin, M.A. Semkin, N.V. Selezneva, S.V. Andreev, M.V. Ragozina, A.V. Zinin. Phys. Solid State 64, 4, 222 (2022). https://doi.org/10.1134/S1063783422050080
  5. S.H. Kilcoyne. Physica B 296--298, 660 (2000). https://doi.org/10.1016/S0921-4526(99)01731-7
  6. Z. Sniadecki, M. Kopcewicz, N. Pierunek, B. Idzikowski. Appl. Phys. 118, 4, 1273 (2015). https://doi.org/10.1007/s00339-014-8829-x
  7. D.S. Neznakhin, A.M. Bartashevich, A.S. Volegov, M.I. Bartashevich, A.V. Andreev. J. Magn. Magn. Mater. 539, 168367 (2021). https://doi.org/10.1016/j.jmmm.2021.168367
  8. E. Gratz, A.S. Markosyan. J. Phys.: Condens. Matter 13, 23, R385 (2001). https://doi.org/10.1088/0953-8984/13/23/202
  9. J. Rodriguez-Corvajal. Physica B 192, 1--2, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I
  10. Y. Wang, H. Shao, X. Li, L. Zhang, S. Takahashi. J. Magn. Magn. Mater. 284, 13 (2004). https://doi.org/10.1016/j.jmmm.2004.06.011
  11. H. Neves Bez, H. Yibole, A. Pathak, Y. Mudryk, V.K. Pecharsky. J. Magn. Magn. Mater. 456, 301 (2018). https://doi.org/10.1016/j.jmmm.2018.03.020
  12. A.S. Andreenko, K.P. Belov, S.A. Nikitin, A.M. Tishin. Sov. Phys.-Uspekhi 32, 8, 649 (1989). https://iopscience.iop.org/ article/10.1070/PU1989v032n08ABEH002745
  13. A.M. Van Der Kraan, P. Gubbens. J. Phys. Colloq. 35, C6, C6-469 (1974). https://hal.science/jpa-00215854/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru