High-resolution visualization of the gravitational separation of a water drop under an electrostatic field
Yu.D. Chashechkin 1, Prokhorov V.E. 1
1Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
Email: yulidch@gmail.com, eddyvic95@gmail.com

PDF
A high-resolution video recording of gravitational pinch-off of the freely falling drop additionally affected with an external electrostatic field is carried out. The evolution of the shape and dynamics of motion of the structural components both the droplet itself and the satellite, as well as the secondary satellite in the absence of an electric field, is traced. Estimates of the total energy components, dominate scales and dimensionless parameters of the flow under study are given. Keywords: drop, gravity, electrostatic field, shape evolution, high-voltage source, high-speed video filming.
  1. F. Guthrie. Proc. R. Soc. Lond., 13, 457 (1864). DOI: 10.1098/rspl.1863.0091
  2. J.J. Thomson, H.F. Newall. Proc. R. Soc. Lond., 29, 417 (1885). DOI: 10.1098/rspl.1885.0034
  3. J. Zeleny. Phys. Rev., 3 (2), 69 (1914). DOI: 10.1103/physrev.3.69
  4. J. Zeleny. Proc. Cambridge Philos. Soc., 18 (1), 71 (1915)
  5. J. Zeleny. Phys. Rev., 10 (1), 1 (1917). DOI: 10.1103/physrev.10.1
  6. S.E. Law. IEEE Transactions on Industry Applications, IA-19 (2), 160 (1983). DOI: 10.1109/tia.1983.4504176
  7. D. Peregrine, G. Shoker, A. Symon. J. Fluid Mech., 212 (1), 25 (1990). DOI: 10.1017/S0022112090001835
  8. X. Zhang, O.A. Basaran. Phys. Fluids, 7 (6), 1184 (1995). DOI: 10.1063/1.868577
  9. Yu.D. Chashechkin, V.E. Prokhorov. J. Appl. Mech. Tech. Phys., 57 (3), 402 (2016). DOI: 10.1134/S0021894416030032
  10. A.I. Korshunov. Fluid Dyn., 50 (4), 585 (2015). DOI: 10.1134/S0015462815040134
  11. A.V. Kistovich, Yu.D. Chashechkin. Atm. Oceanica Phys., 54 (2), 182 (2018). DOI: 10.7868/S0003351518020095
  12. J. Eggers. Rev. Modern Phys., 69 (3), 865 (1997). DOI: 10.1103/revmodphys.69.865
  13. E. Wilkes, S.D. Phillips, O.A. Basaran. Phys. Fluids, 11 (12), 3577 (1999). DOI: 10.1063/1.870224
  14. F. Bierbrauer, N. Kapur, M.C.T. Wilson. ESAIM: Proceed., 40, 16 (2013). DOI: 10.1051/proc/201340002
  15. Yu.D. Chashechkin, A.Y. Ilinykh. Axioms, 12 (4), 374 (2023). DOI: 10.3390/axioms12040374
  16. P.K. Notz, A.U. Chen, O.A. Basaran. Phys. Fluids, 13 (3), 549 (2001). DOI: 10.1063/1.1343906
  17. R. Feistel. Ocean Sci., 14, 471 (2018). DOI: 10.5194/os-14-471-2018
  18. A.H. Harvey, J. Hruby, K. Meier. J. Phys. Chem. Refer. Data, 52, 011501 (2023)
  19. L.D. Landau, E.M. Lifshits. Teoreticheskaya fizika. Tom VI. Gidrodinamika (Nauka, M., 1986) (in Russian)
  20. Y.D. Chashechkin. Axioms, 10 (4), 286 (2021). DOI: 10.3390/axioms10040286
  21. A.A. Zemskov, S.O. Shiryaeva, A.I. Grigor'ev. J. Colloid Interface Sci., 158 (1), 54 (1993). DOI: 10.1006/jcis.1993.1228
  22. A.I. Grigor'ev, S.O. Shiryaeva. J. Aerosol Sci., 25 (6), 1079 (1994). DOI: 10.1016/0021- 8502(94)90203-8
  23. P.K. Notz, O.A. Basaran. J. Colloid Interface Sci., 213 (1), 218 (1999). DOI: 10.1006/jcis.1999.6136
  24. R.N. Savage, G.M. Hieftje. Rev. Sci. Instrum., 49 (10), 1418 (1978). DOI: 10.1063/1.1135281
  25. T. Takamatsu, M. Yamaguchi, T. Katayama. J. Chem. Engin. Jpn., 16 (4), 267 (1983). DOI: 10.1252/jcej.16.267
  26. M. Cloupeau, B. Prunet-Foch. J. Aerosol Sci., 25 (6), 1021 (1994). DOI: 10.1016/0021-8502(94)90199-6
  27. J. Rosell-Llompart, J. Grifoll, I.G. Loscertales. J. Aerosol Sci., 125, 2 (2018). DOI: 10.1016/j.jaerosci.2018.04.008
  28. X. Zhang, O. Basaran. J. Fluid Mech., 326, 239 (1996). DOI: 10.1017/S0022112096008300
  29. R.T. Collins, J.J. Jones, M.T. Harris, O.A. Basaran. Nature Phys., 4 (2), 149 (2008). DOI: 10.1038/nphys807
  30. P.K. Notz, A.U. Chen, O.A. Basaran. Phys. Fluids, 13 (3), 549 (2001). DOI: 10.1063/1.1343906
  31. C.R. Anthony, H. Wee, V. Garg, S.S. Thete, P.M. Kamat, B.W. Wagoner, E.D. Wilkes, P.K. Notz, A.U. Chen, R. Suryo, K. Sambath, J.C. Panditaratne, Y.-C. Liao, O.A. Basaran. Annu. Rev. Fluid Mech., 55, 707 (2023). DOI: 10.1146/annurev-fluid-120720-014714
  32. Unique Research Facility "Hydrophysical complex for modeling hydrodynamic processes in the environment and their impact on underwater technical objects, as well as the transport of impurities in the ocean and atmosphere (URF "HPC IPMech RAS")" site http://www.ipmnet.ru/uniqequip/gfk/\#equip
  33. P. Lenard. Anal. Phys., 370, 629 (1921). DOI: 10.1002/andp.19153521203
  34. S.I. Karakashev, N.A. Grozev. Coatings, 10, 1003 (2020). DOI: 10.3390/coatings10101003
  35. Lord Rayleigh. Nature, 44 (1133), 249 (1891). DOI: 10.1038/044249e0
  36. Yu.D. Tchashechkin, V.E. Prokhorov. Doklady RAN.454 (1), 31 (2014).(in Russian) DOI: 10.1134/S1028335814010017
  37. V.E. Prokhorov,Yu.D. Tchashechkin. Izvestiya RAN. MZhG, 4, 109 (2014). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru