Influence of varistor effect and contact phenomena on the characteristics of solid-state lithium-ion batteries with semiconductor electrodes
Rudy A. S. 1, Mironenko A.A. 1, Naumov V. V. 1, Churilov A. B. 1, Kurbatov S. V. 1, Egorova Yu. S. 1, Kozlov E. A. 1
1Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
Email: rudy@uniyar.ac.ru, amironenko55@mail.ru, vvnau@rambler.ru, abchurilov@mail.ru, kurbatov-93@bk.ru, tortseva.julia@mail.ru, eakf@yandex.ru

PDF
The results of measuring the charge-discharge characteristics of solid-state thin-film lithium-ion batteries with a nanocomposite anode based on a-Si(Al) solid solution are presented. The charging characteristics of batteries have a feature in the form of a step on the smooth branch of the charge curve. It is shown that the appearance of the step is associated with the compensation of a-Si(Al) and the change from hole to electron conductivity due to lithiation of the electrode during charging. As a result of lithiation, the electron over-barrier current becomes the main component of the charging current. To maintain a galvanostatic charge mode, the potentiostat increases the voltage by the height of the potential barrier, which leads to the appearance of a step on the charging curve. The impedance of a solid-state thin-film lithium-ion battery of the LiCoO_2-LiPON-Si@O@Al electrochemical system was measured in the temperature range from -20 to 50oC. A structural model of the accumulator is proposed and the parameters of the structural elements of the model are calculated which provide the best fit for experimental Nyquist diagrams. The obtained values of the electrodes' resistivity are orders of magnitude higher than the results of direct measurements and data from literary sources. According to the IV-characteristics obtained by cyclic voltammetry the high resistance of the electrodes is due to the metal-semiconductor contact and the varistor effect of the electrode material. The results obtained make significant adjustments to the interpretation of the impedance spectra and structural models of solid-state lithium-ion batteries based on semiconductor materials. Keywords: Thin-film solid-state lithium-ion battery, semiconductor, nanocomposite, impedance spectroscopy, Schottky barrier, varistor effect.
  1. N.F. Mendoza. Flexible Battery Market to hit 500 Million in 2030 [Electronic source] Available at: https://www.techrepublic.com/article/flexible-battery-market-to-hit-500-million-in-2030 (date of access: 12.10.2020)
  2. J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney. J. Electrochem. Soc., 147, 59 (2000). DOI: 10.1149/1.1393157
  3. Y.N. Zhou, M.Z. Xue, Z.-W. Fu. J. Power Sources, 234, 310 (2013). DOI: 10.1016/j.jpowsour.2013.01.183
  4. X. Zuo, J. Zhu, P. Muller-Buschbaum, Y.-J. Cheng. Nano Energy, 31, 113 (2017). DOI: 10.1016/j.nanoen.2016.11.013
  5. K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao, M. Cai, Z. Chen. Small, 14, 1702737 (2018). DOI: 10.1002/smll.201702737
  6. W.-J. Zhang. J. Power Sources, 196, 13 (2011). DOI: 10.1016/j.jpowsour.2010.07.020
  7. J.R. Szczech, S. Jin. Energy Environ. Sci., 4, 56 (2011). DOI: 10.1039/C0EE00281J
  8. B. Liang, Y. Liu, Y. Xu. J. Power Sourc., 267, 469 (2014). DOI: 10.1016/j.jpowsour.2014.05.096
  9. A.V. Metlitskaya, A.A. Mironenko, N.F. Nikol'skaya, V.V. Odinokov, G.Ya. Pavlov, D.E. Pukhov, A.S. Rudyi, A.M. Skundin, V.A. Sologub, I.S. Fedorov, A.B. Churilov. Russ. Microelectron., 45 (4), 285 (2016). DOI: 10.1134/S1063739716030021
  10. A.A. Mironenko, I.S. Fedorov, A.S. Rudy, V.N. Andreev, D.Yu. Gryzlov, T.L. Kulova, A.M. Skundin. Monatshefte fur Chemie-Chemical Monthly, 150 (10), 1753 (2019). DOI: 10.1007/s00706-019-02497-1
  11. A.S. Rudy, A.A. Mironrenko, V.V. Naumov, A.B. Churilov. Tech. Phys. Lett., 48 (6), 63 (2022). DOI: 10.21883/TPL.2022.06.53794.19188
  12. A.S. Rudy, A.B. Churilov, A.A. Mironrenko, V.V. Naumov, S.V. Kurbatov, E.A. Kozlov. Tech. Phys. Lett., 48 (9), 7 (2022). DOI: 10.21883/TPL.2022.09.55072.19276
  13. T.L. Kulova, A.A. Mironenko, A.S. Rudy, A.M. Skundin, All Solid State Thin-Film Lithium-Ion Batteries. Materials, Technology, and Diagnostics (CRC Press. Taylor \& Francis Group, LLC, London, NY., 2021), DOI: 10.1201/9780429023736
  14. L.A. Mazaletsky Issledovaniye vliyaniya struktury i fazovogo sostava nanokompozitov na osnove kremniya na protsessy vnedreniya i ekstraktsii litiya. Kand. diss. (MIFI, M., 2022), 134 p
  15. M. Grundmann The Physics of Semiconductors. An Introduction Including Nanophysics and Applications, Graduate Texts in Physics (Springer Nature Switzerland AG 2021), DOI: 10.1007/978-3-030-51569-0
  16. D.A. Drabold, U. Stephan, J. Dong, S.M. Nakhmanson. J. Mol. Graphics Mod., 17 (5-6), 285 (1999). DOI: 10.1016/S1093-3263(99)00036-4
  17. B.A. Golodenko, A.B. Golodenko. Vestnik VGUIT 2, 65 (2014). https://cyberleninka.ru/article/n/modelirovanie-elekt- ronnoy-struktury-i-raschyot-osnovnyh-elektro-fizicheskih-pa- rametrov-amorfnogo-kremniya
  18. B.A. Golodenko, A.B. Golodenko. Nano- i mikrosistemnaya tekhnika, 11, 148 (23) (2012) (in Russian). http://www.micro- systems.ru/files/publ/article201211p23-27.pdf
  19. A. Rudy, A. Mironenko, V. Naumov, A. Novozhilova, A. Skundin, I. Fedorov. Batteries, 7 (2), 21 (2021). DOI: 10.3390/batteries7020021
  20. Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi. J. Power Sourc., 146 (1-2), 745 (2005). DOI: 10.1016/j.jpowsour.2005.03.073
  21. Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi. Solid State Ionics, 176 (31-34), 2371 (2005). DOI: 10.1016/j.ssi.2005.02.025
  22. S.D. Fabre, D. Guy-Bouyssou, P. Bouillon, F.Le Cras, C. Delacourta. J. Electrochem. Soc., 159 (2) A104 (2012). DOI: 10.1149/2.041202jes
  23. S. Larfaillou, D. Guy-Bouyssou, F. Le Cras, S. Franger. ECS Transactions, 61 (27), 165 (2014). DOI: 10.1149/06127.0165ecst
  24. D. Aurbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, L. Heider. J. Electrochem. Soc., 145 (9), 3024 (1998). DOI: 10.1149/1.1838758
  25. R.I. Korneikov, V.V. Efremov, V.I. Ivanenko, K.A. Kesarev. Russ. J. Electrochem. 57 (5), 499 (2021). DOI: 10.1134/S1023193521050074
  26. K.S. Cole, R.H. Cole. J. Chem. Phys., 9 (4) 341 (1941). DOI: 10.1063/1.1750906
  27. D.G. Kellerman, V.R. Galakhov, A.S. Semenova, Ya.N. Blinovskov, O.N. Leonidova. Phys. Solid State, 48 (3), 548 (2006). DOI: 10.1134/S106378340603022X
  28. E. Plichta, M. Solomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner, H.W. Lin. J. Power Souces, 21 (1), 25 (1987). DOI: 10.1016/0378-7753(87)80074-5
  29. K. Wang, J. Wan, Y. Xiang, J. Zhu, Q. Leng, M. Wang, L. Xu, Y. Yang. J. Power Souc., 460, 228062 (2006). DOI: 10.1016/j.jpowsour.2020.228062
  30. M.W. Swift, Y. Qi. Phys. Rev. Lett., 122, 167701 (2019). DOI: 10.1103/PhysRevLett.122.167701

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru