Optical properties of materials for magnesium plasmonics described within DFT+U approach
Durymanov V. A. 1, Avakyan L. A. 1, Srabionyan V. V.1, Rubanik D. S. 1, Bugaev L. A. 1
1Southern Federal University, Rostov-on-Don, Russia
Email: durymanov@sfedu.ru, laavakyan@sfedu.ru, rubanik@sfedu.ru, bugaev@sfedu.ru

PDF
The most widely used and applied plasmonic materials, namely silver and gold, has limitations due to their high cost and restriction on the spectral position and shape of the plasmon resonance. This remains true for bimetallic silver-gold nanoparticles. Higher flexibility is required, in particular, for the design of broadband absorbers of light, and for this task the metals other than silver and gold are considered. In this paper we study the optical extinction spectra of alloy and composite nanoparticles containing magnesium and gold. The dielectric properties are calculated within the approximation of independent particles (IPA) based on the electronic structure obtained using density functional theory (DFT) with Hubbard correction (DFT+U). The obtained spectra of optical extinction of magnesium-gold alloy nanoparticles demonstrate that the most sensitive to the composition is the region of wavelengths below 500 nm. Simultaneously, the position of the plasmon resonance predicted by Vegard's law is higher than obtained from accurate DFT+U based calculations. We managed to describe the experimental optical extinction spectra of the glass sample containing gold and magnesium atoms using the calculated spectra. The results points on the formation of composite nanoparticles with core of Au3Mg alloy and shell of Au in the considered sample. Keywords: Density functional theory with Hubbard correction, optical extinction spectra, MgAu alloys, localized surface plasmon resonance.
  1. V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati. J. Phys. Cond. Matt., 29, 203002 (2017). DOI: 10.1088/1361-648X/aa60f3
  2. E.S. Babich, E.S. Gangrskaia, I.V. Reduto, J. Beal, A.V. Redkov, T. Maurer, A.A. Lipovskii. Curr. Appl. Phys., 19, 1088-1095 (2019). DOI: 10.1016/j.cap.2019.07.003
  3. L. Tong, T. Zhua, Z. Liu. Chem. Soc. Rev., 40, 1296-1304 (2011). DOI: 10.1039/c001054p
  4. J.U. Kim, S. Lee, S.J. Kang, T. Kim. Nanoscale, 10, 21555-21574 (2018). DOI: 10.1039/C8NR06024J
  5. J.R. Meji a-Salazar, O.N. Oliveira. Chem. Rev., 118,
  6. G. Baffou, R. Quidant. Chem. Soc. Rev., 43, 3898 (2014). DOI: 10.1039/c3cs60364d
  7. M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, A. Boltasseva, B. Gholipour, H.N.S. Krishnamoorthy, K.F. MacDonald, C. Soci, N.I. Zheludev, V. Savinov, R. Singh, P. Grob, C. Lienau, M. Vadai, M.L. Solomon, D.R. Barton, M. Lawrence, J.A. Dionne, S.V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T.W. Odom, N. Accanto, P.M. de Roque, I.M. Hancu, L. Piatkowski, N.F. van Hulst, M.F. Kling. J. Opt., 20, 043001 (2018). DOI: 10.1088/2040-8986/aaa114
  8. E.S. Sazali, M.R. Sahar, S.K. Ghoshal, R. Arifin, M.S. Rohani, A. Awang. J. Alloys Compd., 607, 85-90 (2014). DOI: 10.1016/j.jallcom.2014.03.175
  9. M.A. Garcia. J. Phys. D., 44, 283001 (2011). DOI: 10.1088/0022-3727/44/28/283001
  10. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Y. Losytskyy, A.V. Kotko, A.O. Pinchuk. Phys. Rev. B, 79, 235438 (2009). DOI: 10.1103/PhysRevB.79.235438
  11. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne. Nano Lett., 7, 1947-1952 (2007). DOI: 10.1021/nl070648a
  12. Y. Gutierrez, D. Ortiz, J.M. Sanz, J.M. Saiz, F. Gonzalez, H.O. Everitt, F. Moreno. Opt. Express, 24, 20621 (2016). DOI: 10.1364/OE.24.020621
  13. Y. Gutierrez, M. Losurdo, P. Garci a-Fernandez, M. Sainz de la Maza, F. Gonzalez, A.S. Brown, H.O. Everitt, J. Junquera, F. Moreno. Opt. Mater. Express, 9, 4050 (2019). DOI: 10.1364/OME.9.004050
  14. J.S. Biggins, S. Yazdi, E. Ringe. Nano Lett., 18, 3752-3758 (2018). DOI: 10.1021/acs.nanolett.8b00955
  15. M.Y. Gutkin, A.L. Kolesnikova, S.A. Krasnitsky, A.E. Romanov. Phys. Solid State, 56, 723-730 (2014). DOI: 10.1134/S1063783414040106
  16. A.A. Antipov, S.M. Arakelian, S.V. Kutrovskaya, A.O. Kucherik, T.A. Vartanian. Opt. Spectrosc., 116, 324-327 (2014). DOI: 10.1134/S0030400X14020039
  17. C. Gong, M.S. Leite. ACS Photonics, 3, 507?513 (2016). DOI: 10.1021/acsphotonics.5b00586
  18. M.-H. Chiu, J.-H. Li, T. Nagao. Micromachines, 10, 73 (2019). DOI: 10.3390/mi10010073
  19. M. Heinz, V. V. Srabionyan, L.A. Avakyan, A.L. Bugaev, A.V. Skidanenko, S.Y. Kaptelinin, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, L.A. Bugaev. J. Alloys Compd., 767, 1253-1263 (2018). DOI: 10.1016/j.jallcom.2018.07.183
  20. Z. Nemati, J. Alonso, H. Khurshid, M.H. Phan, H. Srikanth. RSC Adv., 6, 38697-38702 (2016). DOI: 10.1039/C6RA05064F
  21. A.V. Skidanenko, L.A. Avakyan, E.A. Kozinkina, L.A. Bugaev. Phys. Solid State, 60, 2571-2578 (2018). DOI: 10.1134/S1063783419010256
  22. L. Avakyan, V. Durimanov, D. Nemesh, V. Srabionyan, J. Ihlemann, L. Bugaev. Opt. Mater. (Amst)., 109, 110264 (2020). DOI: 10.1016/j.optmat.2020.110264
  23. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys. Cond. Matt., 21, 395502 (2009). DOI: 10.1088/0953-8984/21/39/395502
  24. I. Timrov, N. Marzari, M. Cococcioni. Phys. Rev. B, 98, 085127 (2018). DOI: 10.1103/PhysRevB.98.085127
  25. J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Du ak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H. Kristoffersen, M. Kuisma, A.H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. Olsen, V. Petzold, N.A. Romero, J. Stausholm-M ller, M. Strange, G.A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Hakkinen, G.K.H. Madsen, R.M. Nieminen, J.K. N rskov, M. Puska, T.T. Rantala, J. Schi tz, K.S. Thygesen, K.W. Jacobsen. J. Phys. Cond. Matt., 22, 253202 (2010). DOI: 10.1088/0953-8984/22/25/253202
  26. S. Gravzulis, A. Davskevivc, A. Merkys, D. Chateigner, L. Lutterotti, M. Quiros, N.R. Serebryanaya, P. Moeck, R.T. Downs, A. Le Bail. Nucleic Acids Res., 40, D420-D427 (2012). DOI: 10.1093/nar/gkr900
  27. D.R. Hamann. Phys. Rev. B, 88, 085117 (2013). DOI: 10.1103/PhysRevB.88.085117
  28. D.W. Mackowski, M.I. Mishchenko. J. Quant. Spectrosc. Radiat. Transf., 112, 2182?2192 (2011). DOI: 10.1016/j.jqsrt.2011.02.019
  29. L.A. Avakyan, M. Heinz, A. V Skidanenko, K.A. Yablunovski, J. Ihlemann, J. Meinertz, C. Patzig, M. Dubiel, L.A. Bugaev. J. Phys. Cond. Matt., 30, 045901 (2018). DOI: 10.1088/1361-648X/aa9fcc
  30. S.A. Tolba, K.M. Gameel, B.A. Ali, H.A. Almossalami, N.K. Allam. The DFT+U: Approaches, Accuracy, and Applications, in: Density Funct. Calc. --- Recent Progresses Theory Appl., InTech, 2018. DOI: 10.5772/intechopen.72020
  31. D. Rioux, S. Vallieres, S. Besner, P. Munoz, E. Mazur, M. Meunier. Adv. Opt. Mater., 2, 176-182 (2014). DOI: 10.1002/adom.201300457
  32. H.-J. Hagemann, W. Gudat, C. Kunz. JOSA, 65, 742 (1975). DOI: 10.1364/JOSA.65.000742
  33. L. Gamez-Mendoza, M.W. Terban, S.J.L. Billinge, M. Martinez-Inesta. J. Appl. Crystallogr., 50, 741-748 (2017). DOI: 10.1107/S1600576717003715

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru