Investigation of the stability of the optical characteristics of thin films based on CsPbBr3 perovskite nanocrystals and p(MMA-LMA) copolymer
Knysh A. A.
1, Gulevich D.G.
1, Nabiev I.R.
2,3, Samokhvalov P. S.
1,21Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
2Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
3Laboratoire de Recherche en Nanosciences (LRN-EA), Universite de Reims Champagne-Ardenne, Reims, France
Email: knyshkikai@mail.ru, dayana_gulevich@mail.ru, igor.nabiev@gmail.com, p.samokhvalov@gmail.com
Despite the excellent optical characteristics of perovskite nanocrystals (PNCs) based on CsPbBr3, they have a relatively low stability, which limits their use as materials for hybrid light-emitting diodes, single-photon sources, solar cells, and other optoelectronic devices, as well as X-ray and gamma-ray detectors. The present study reports the results of experiments on composite thin films based on PNCs and copolymer of methyl and lauryl methacrylates. The changes in the quantum yield and mean luminescence lifetime in thin film samples with different copolymer mass fractions relative to CsPbBr3-based PNCs have been investigated. It has been shown that composite samples containing from 10 to 20 wt.% of copolymer have an improved temporal stability of optical characteristics, which makes them promising for practical use in optoelectronic applications. Keywords: perovskite nanocrystals, thin films, luminescence kinetics, quantum yield.
- Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna. Nat. Mater., 17 (5), 394-405 (2018). DOI: 10.1038/s41563-018-0018-4
- D. Wang, M. Wright, N.K. Elumalai, A. Uddin. Sol. Energy Mater. Sol. Cells., 147, 255-275 (2016). DOI: 10.1016/j.solmat.2015.12.025
- A.H. Slavney, R.W. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, H.I. Karunadasa. Inorg. Chem., 56(1), 46-55 (2017). DOI: 10.1021/acs.inorgchem.6b01336
- Q. Sun, W.-J.Yin. J. Am. Chem. Soc., 139 (42), 14905-14908 (2017). DOI: 10.1021/jacs.7b09379
- Z.-J. Yong, S.-Q. Guo, J.-P. Ma, J.-Y. Zhang, Z.-Y. Li, Y.-M. Chen, B.-B. Zhang, Y. Zhou, J. Shu, J.-L. Gu, L.-R. Zheng, O.M. Bakr, H.-T. Sun. J. Am. Chem. Soc., 140 (31), 9942-9951 (2018). DOI: 10.1021/jacs.8b04763
- G.H. Ahmed, Y. Liu, I. Bravic, X. Ng, I. Heckelmann, P. Narayanan, M.S. Fernandez, B. Monserrat, D.N. Congreve, S. Feldmann. J. Am. Chem. Soc., 144(34), 15862-15870 (2022). DOI: 10.1021/jacs.2c07111
- F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong, M.A. Loi, L.-M. mLiu, N. Zhao. Adv. Mater., 28 (45), 9986-9992 (2016). DOI: 10.1002/adma.201603062
- J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J.C. Martins, I. Van Driessche, M.V. Kovalenko, Z. Hens. ACS Nano, 10 (2), 2071-2081 (2016). DOI: 10.1021/acsnano.5b06295
- H.C. Yoon, S. Lee, J.K. Song, H. Yang, Y.R. Do. ACS Appl. Mater. Interfaces, 10 (14), 11756-11767 (2018). DOI: 10.1021/acsami.8b01014
- H. Hu, L. Wu, Y. Tan, Q. Zhong, M. Chen, Y. Qiu, D. Yang, B. Sun, Q. Zhang, Y. Yin. J. Am. Chem. Soc., 140 (1), 406-412 (2018). DOI: 10.1021/jacs.7b11003
- Z. Zhang, L. Li, L. Liu, X. Xiao, H. Huang, J. Xu. J. Phys. Chem. C, 124 (40), 22228-22234 (2020). DOI: 10.1021/acs.jpcc.0c05774
- Y. Li, Y. Lv, Z. Guo, L. Dong, J. Zheng, C. Chai, N. Chen, Y. Lu, C. Chen. ACS Appl. Mater. Interfaces, 10(18), 15888-15894 (2018). DOI: 10.1021/acsami.8b02857
- J. Nie, C. Li, S. Zhou, J. Huang, X. Ouyang, Q. Xu. ACS Appl. Mater. Interfaces, 13 (45), 54348-54353 (2021). DOI: 10.1021/acsami.1c15613
- P. Liang, P. Zhang, A. Pan, K. Yan, Y. Zhu, M. Yang, L. He. ACS Appl. Mater. Interfaces, 11 (25), 22786-22793 (2019). DOI: 10.1021/acsami.9b06811
- Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed. ACS Energy Lett., 6(2), 739-768 (2021). DOI: 10.1021/acsenergylett.0c02430
- Y. Xin, H. Zhao, J. Zhang. ACS Appl. Mater. Interfaces, 10 (5), 4971-4980 (2018). DOI: 10.1021/acsami.7b16442
- Y. Wei, X. Deng, Z. Xie, X. Cai, S. Liang, P. Ma, Z. Hou, Z. Cheng, J. Lin. Adv. Funct. Mater., 27 (39), 1703535 (2017). DOI: 10.1002/adfm.201703535
- F. Boussoufi, M. Pousthomis, A. Kuntzmann, M. D'Amico, G. Patriarche, B. Dubertret. ACS Appl. Nano Mater., 4 (7), 7502-7512 (2021). DOI: 10.1021/acsanm.1c01552
- T. Dong, J. Zhao, G. Li, F.-C. Li, Q. Li, S. Chen. ACS Appl. Mater. Interfaces, 13 (33), 39748-39754 (2021). DOI: 10.1021/acsami.1c10806
- T.A. Cohen, Y. Huang, N.A. Bricker, C.S. Juhl, T.J. Milstein, J.D. McKenzie, C.K. Luscombe, D.R. Gamelin. Chem. Mater., 33 (10), 3779-3790 (2021). DOI: 10.1021/acs.chemmater.1c00902
- G. Raino, A. Landuyt, F. Krieg, C. Bernasconi, S.T. Ochsenbein, D.N. Dirin, M.I. Bodnarchuk, M.V. Kovalenko. Nano Lett., 19 (6), 3648-3653 (2019). DOI: 10.1021/acs.nanolett.9b00689
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R. X. Yang, A. Walsh, M.V. Kovalenko. Nano Lett., 15 (6), 3692-3696 (2015). DOI: 10.1021/nl5048779
- D.G. Gulevich, A.A. Tkach, I.R. Nabiev, V.A. Krivenkov, P.S. Samokhvalov. Tech. Phys., 68(2), 241 (2023). DOI: 10.21883/TP.2023.02.55479.240-22
- A. Knysh, A. Tkach, D. Gulevich, I. Nabiev, P. Samokhvalov. Phys. At. Nucl., 85 (10), 1619-1624 (2022). DOI: 10.1134/S1063778822090186
- V. Chernikova, O. Shekhah, M. Eddaoudi. ACS Appl. Mater. Interfaces, 8 (31), 20459-20464 (2016). DOI: 10.1021/acsami.6b04701
- F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong. ACS Nano, 9 (4), 4533-4542 (2015). DOI: 10.1021/acsnano.5b01154
- Y. Li, S. Natakorn, Y. Chen, M. Safar, M. Cunningham, J. Tian, D.D.-U. Li. Front. Phys., 8 (2020). DOI: 10.3389/fphy.2020.576862
- X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, S. Chen. RSC Adv., 7 (17), 10391-10396 (2017). DOI: 10.1039/C6RA27665B
- J.R. Lakowicz. Principles of Fluorescence Spectroscopy (Springer US: Boston, MA, 2006). DOI: 10.1007/978-0-387-46312-4
- R.M. Clegg. Curr. Opin. Biotechnol., 6 (1), 103-110 (1995). DOI: 10.1016/0958-1669(95)80016-6
- K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev. Nano Today, 11 (2), 189-211 (2016). DOI: 10.1016/j.nantod.2016.04.005
- V. Krivenkov, P. Samokhvalov, M. Zvaigzne, I. Martynov, A. Chistyakov, I. Nabiev. J. Phys. Chem. C, 122 (27), 15761-15771 (2018). DOI: 10.1021/acs.jpcc.8b04544
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.