Investigation of the stability of the optical characteristics of thin films based on CsPbBr3 perovskite nanocrystals and p(MMA-LMA) copolymer
Knysh A. A.1, Gulevich D.G. 1, Nabiev I.R.2,3, Samokhvalov P. S. 1,2
1Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
2Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
3Laboratoire de Recherche en Nanosciences (LRN-EA), Universite de Reims Champagne-Ardenne, Reims, France
Email: knyshkikai@mail.ru, dayana_gulevich@mail.ru, igor.nabiev@gmail.com, p.samokhvalov@gmail.com

PDF
Despite the excellent optical characteristics of perovskite nanocrystals (PNCs) based on CsPbBr3, they have a relatively low stability, which limits their use as materials for hybrid light-emitting diodes, single-photon sources, solar cells, and other optoelectronic devices, as well as X-ray and gamma-ray detectors. The present study reports the results of experiments on composite thin films based on PNCs and copolymer of methyl and lauryl methacrylates. The changes in the quantum yield and mean luminescence lifetime in thin film samples with different copolymer mass fractions relative to CsPbBr3-based PNCs have been investigated. It has been shown that composite samples containing from 10 to 20 wt.% of copolymer have an improved temporal stability of optical characteristics, which makes them promising for practical use in optoelectronic applications. Keywords: perovskite nanocrystals, thin films, luminescence kinetics, quantum yield.
  1. Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna. Nat. Mater., 17 (5), 394-405 (2018). DOI: 10.1038/s41563-018-0018-4
  2. D. Wang, M. Wright, N.K. Elumalai, A. Uddin. Sol. Energy Mater. Sol. Cells., 147, 255-275 (2016). DOI: 10.1016/j.solmat.2015.12.025
  3. A.H. Slavney, R.W. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, H.I. Karunadasa. Inorg. Chem., 56(1), 46-55 (2017). DOI: 10.1021/acs.inorgchem.6b01336
  4. Q. Sun, W.-J.Yin. J. Am. Chem. Soc., 139 (42), 14905-14908 (2017). DOI: 10.1021/jacs.7b09379
  5. Z.-J. Yong, S.-Q. Guo, J.-P. Ma, J.-Y. Zhang, Z.-Y. Li, Y.-M. Chen, B.-B. Zhang, Y. Zhou, J. Shu, J.-L. Gu, L.-R. Zheng, O.M. Bakr, H.-T. Sun. J. Am. Chem. Soc., 140 (31), 9942-9951 (2018). DOI: 10.1021/jacs.8b04763
  6. G.H. Ahmed, Y. Liu, I. Bravic, X. Ng, I. Heckelmann, P. Narayanan, M.S. Fernandez, B. Monserrat, D.N. Congreve, S. Feldmann. J. Am. Chem. Soc., 144(34), 15862-15870 (2022). DOI: 10.1021/jacs.2c07111
  7. F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong, M.A. Loi, L.-M. mLiu, N. Zhao. Adv. Mater., 28 (45), 9986-9992 (2016). DOI: 10.1002/adma.201603062
  8. J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J.C. Martins, I. Van Driessche, M.V. Kovalenko, Z. Hens. ACS Nano, 10 (2), 2071-2081 (2016). DOI: 10.1021/acsnano.5b06295
  9. H.C. Yoon, S. Lee, J.K. Song, H. Yang, Y.R. Do. ACS Appl. Mater. Interfaces, 10 (14), 11756-11767 (2018). DOI: 10.1021/acsami.8b01014
  10. H. Hu, L. Wu, Y. Tan, Q. Zhong, M. Chen, Y. Qiu, D. Yang, B. Sun, Q. Zhang, Y. Yin. J. Am. Chem. Soc., 140 (1), 406-412 (2018). DOI: 10.1021/jacs.7b11003
  11. Z. Zhang, L. Li, L. Liu, X. Xiao, H. Huang, J. Xu. J. Phys. Chem. C, 124 (40), 22228-22234 (2020). DOI: 10.1021/acs.jpcc.0c05774
  12. Y. Li, Y. Lv, Z. Guo, L. Dong, J. Zheng, C. Chai, N. Chen, Y. Lu, C. Chen. ACS Appl. Mater. Interfaces, 10(18), 15888-15894 (2018). DOI: 10.1021/acsami.8b02857
  13. J. Nie, C. Li, S. Zhou, J. Huang, X. Ouyang, Q. Xu. ACS Appl. Mater. Interfaces, 13 (45), 54348-54353 (2021). DOI: 10.1021/acsami.1c15613
  14. P. Liang, P. Zhang, A. Pan, K. Yan, Y. Zhu, M. Yang, L. He. ACS Appl. Mater. Interfaces, 11 (25), 22786-22793 (2019). DOI: 10.1021/acsami.9b06811
  15. Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed. ACS Energy Lett., 6(2), 739-768 (2021). DOI: 10.1021/acsenergylett.0c02430
  16. Y. Xin, H. Zhao, J. Zhang. ACS Appl. Mater. Interfaces, 10 (5), 4971-4980 (2018). DOI: 10.1021/acsami.7b16442
  17. Y. Wei, X. Deng, Z. Xie, X. Cai, S. Liang, P. Ma, Z. Hou, Z. Cheng, J. Lin. Adv. Funct. Mater., 27 (39), 1703535 (2017). DOI: 10.1002/adfm.201703535
  18. F. Boussoufi, M. Pousthomis, A. Kuntzmann, M. D'Amico, G. Patriarche, B. Dubertret. ACS Appl. Nano Mater., 4 (7), 7502-7512 (2021). DOI: 10.1021/acsanm.1c01552
  19. T. Dong, J. Zhao, G. Li, F.-C. Li, Q. Li, S. Chen. ACS Appl. Mater. Interfaces, 13 (33), 39748-39754 (2021). DOI: 10.1021/acsami.1c10806
  20. T.A. Cohen, Y. Huang, N.A. Bricker, C.S. Juhl, T.J. Milstein, J.D. McKenzie, C.K. Luscombe, D.R. Gamelin. Chem. Mater., 33 (10), 3779-3790 (2021). DOI: 10.1021/acs.chemmater.1c00902
  21. G. Raino, A. Landuyt, F. Krieg, C. Bernasconi, S.T. Ochsenbein, D.N. Dirin, M.I. Bodnarchuk, M.V. Kovalenko. Nano Lett., 19 (6), 3648-3653 (2019). DOI: 10.1021/acs.nanolett.9b00689
  22. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R. X. Yang, A. Walsh, M.V. Kovalenko. Nano Lett., 15 (6), 3692-3696 (2015). DOI: 10.1021/nl5048779
  23. D.G. Gulevich, A.A. Tkach, I.R. Nabiev, V.A. Krivenkov, P.S. Samokhvalov. Tech. Phys., 68(2), 241 (2023). DOI: 10.21883/TP.2023.02.55479.240-22
  24. A. Knysh, A. Tkach, D. Gulevich, I. Nabiev, P. Samokhvalov. Phys. At. Nucl., 85 (10), 1619-1624 (2022). DOI: 10.1134/S1063778822090186
  25. V. Chernikova, O. Shekhah, M. Eddaoudi. ACS Appl. Mater. Interfaces, 8 (31), 20459-20464 (2016). DOI: 10.1021/acsami.6b04701
  26. F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong. ACS Nano, 9 (4), 4533-4542 (2015). DOI: 10.1021/acsnano.5b01154
  27. Y. Li, S. Natakorn, Y. Chen, M. Safar, M. Cunningham, J. Tian, D.D.-U. Li. Front. Phys., 8 (2020). DOI: 10.3389/fphy.2020.576862
  28. X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y.-W. Zhang, P.-F. Tan, S. Chen. RSC Adv., 7 (17), 10391-10396 (2017). DOI: 10.1039/C6RA27665B
  29. J.R. Lakowicz. Principles of Fluorescence Spectroscopy (Springer US: Boston, MA, 2006). DOI: 10.1007/978-0-387-46312-4
  30. R.M. Clegg. Curr. Opin. Biotechnol., 6 (1), 103-110 (1995). DOI: 10.1016/0958-1669(95)80016-6
  31. K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev. Nano Today, 11 (2), 189-211 (2016). DOI: 10.1016/j.nantod.2016.04.005
  32. V. Krivenkov, P. Samokhvalov, M. Zvaigzne, I. Martynov, A. Chistyakov, I. Nabiev. J. Phys. Chem. C, 122 (27), 15761-15771 (2018). DOI: 10.1021/acs.jpcc.8b04544

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru