Control of the photoluminescence lifetime of quantum dots by engineering their shell structure
Samokhvalov P. S. 1,2, Karaulov A. V. 3, Nabiev I. R.3,4
1Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
2Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
3Laboratory of Immunopathology, Department of Clinical Immunology and Allergology of Sechenov University, Moscow, Russia
4Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims, Champagne-Ardenne, Reims, France
Email: p.samokhvalov@gmail.com, drkaraulov@mail.ru, igor.nabiev@gmail.com

PDF
Quantum dots (QDs) are semiconductor nanocrystals with outstanding photoluminescence (PL) characteristics: a PL quantum yield as high as 100%, a small PL emission bandwidth, and a high emission brightness. Due to these properties, QDs have a wide range of prospective applications in optoelectronics, quantum technologies, and biomedicine. The PL lifetime is one of the most important characteristics of QDs and a crucial parameter for their applicability in many specific areas of science and technology. Although this characteristic varies widely for QDs of different chemical compositions and structures, the most common type of QDs based on CdSe cores rarely has a lifetime longer than 30 ns. In this study, an effective method for increasing the QD PL lifetime is proposed. This method consists in the formation of a gradient shell on the surface of CdSe cores, which creates a potential well for excited charge carriers. This approach makes it possible to fabricate QDs with an average PL lifetime of about 100 ns, which is more than three times higher than this parameter for the best samples of such materials reported in the literature. Keywords: semiconductor nanocrystals, quantum dots, shell, photoluminescence, fluorescence, lifetime.
  1. L.E. Brus. J. Chem. Phys., 80, 4403-4409 (1984). DOI: 10.1063/1.447218
  2. P. Samokhvalov, M. Artemyev, I. Nabiev. Chem.-A Eur., 19, 1534-1546 (2013). DOI: 10.1002/chem.201202860
  3. A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. A, 5, 13252-13275 (2017). DOI: 10.1039/C7TA02076G
  4. Z. Chen, H. Li, C. Yuan, P. Gao, Q. Su, S. Chen. Small Methods, (2023). DOI: 10.1002/smtd.202300359
  5. A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J.-M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J.H.M. Cohen, I. Nabiev. Nanomedicine: NBM, 8, 516-525 (2012). DOI: 10.1016/j.nano.2011.07.007
  6. R. Bilan, F. Fleury, I. Nabiev, A. Sukhanova. Bioconjug. Chem., 26 (4), 609-624 (2015). DOI: 10.1021/acs.bioconjchem.5b00069
  7. P. Sokolov, P. Samokhvalov, A. Sukhanova, I. Nabiev. Nanomaterials, 13 (11), 1748 (2023). DOI: 10.3390/nano13111748
  8. W.R. Algar, M. Massey, K. Rees, R. Higgins, K.D. Krause, G.H. Darwish, W.J. Peveler, Z. Xiao, H.-Y. Tsai, R. Gupta, K. Lix, M.V. Tran, H. Kim. Chem. Rev., 121, 9243-9358 (2021). DOI: 10.1021/acs.chemrev.0c01176
  9. V. Krivenkov, P. Samokhvalov, I. Nabiev, Y.P. Rakovich. J. Phys. Chem. Lett., 11, 8018-8025 (2020). DOI: 10.1021/acs.jpclett.0c02296
  10. D. Dovzhenko, V. Krivenkov, I. Kriukova, P. Samokhvalov, A. Karaulov, I. Nabiev. Opt. Lett., 45, 5364 (2020). DOI: 10.1364/OL.400300
  11. D. Dovzhenko, M. Lednev, K. Mochalov, I. Vaskan, P. Samokhvalov, Y. Rakovich, I. Nabiev. Appl. Phys. Lett., 119, 011102 (2021). DOI: 10.1063/5.0047146
  12. C. Galland, Y. Ghosh, A. Steinbruck, J.A. Hollingsworth, H. Htoon, V.I. Klimov. Nat. Commun., 3, 908 (2012). DOI: 10.1038/ncomms1916
  13. D. Borrero Landazabal, A.A. Meza Olivo, K. Garay Palmett, R. Salas Montiel. J. Phys. Conf. Ser., 1159, 012004 (2019). DOI: 10.1088/1742-6596/1159/1/012004
  14. B. Zhang, C. Yang, Y. Gao, Y. Wang, C. Bu, S. Hu, L. Liu, H.V. Demir, J. Qu, K.-T. Yong. Nanotheranostics, 1, 131-140 (2017). DOI: 10.7150/ntno.18989
  15. A. Sukhanova, S. Bozrova, E. Gerasimovich, M. Baryshnikova, Z. Sokolova, P. Samokhvalov, C. Guhrenz, N. Gaponik, A. Karaulov, I. Nabiev. Nanomaterials, 12, 2734 (2022). DOI: 10.3390/nano12162734
  16. S. Slussarenko, G.J. Pryde. Appl. Phys. Rev., 6 (2019). DOI: 10.1063/1.5115814
  17. C.R. Kagan, L.C. Bassett, C.B. Murray, S.M. Thompson. Chem. Rev., 121, 3186-3233 (2021). DOI: 10.1021/acs.chemrev.0c00831
  18. Y. Ghosh, B.D. Mangum, J.L. Casson, D.J. Williams, H. Htoon, J.A. Hollingsworth. J. Am. Chem. Soc., 134 (23), 9634-9643 (2012). DOI: 10.1021/ja212032q
  19. P. Samokhvalov, P. Linkov, J. Michel, M. Molinari, I. Nabiev. In: Colloidal Nanoparticles for Biomedical Applications IX, ed. by W.J. Parak, M. Osinski, K.I. Yamamoto. Proc. SPIE, 8955, 89550S (2014). DOI: 10.1117/12.2040196
  20. P.A. Linkov, K.V. Vokhmintcev, P.S. Samokhvalov, I.R. Nabiev. Opt. Spectrosc., 122 (1), 8-11 (2017). DOI: 10.7868/S0030403417010160
  21. C. Wurth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger. Nat. Protoc., 8 (8), 1535-1550 (2013). DOI: 10.1038/nprot.2013.087
  22. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, K. Rakesh, B.G. Moungi. Nat. Mater., 12 (5), 445-451 (2013). DOI: 10.1038/nmat3539
  23. K. Boldt, N. Kirkwood, G.A. Beane, P. Mulvaney. Chem. Mater., 25 (23), 4731-4738 (2013). DOI: 10.1021/cm402645r
  24. P. Linkov, V. Krivenkov, I. Nabiev, P. Samokhvalov. Mater. Today Proc., 3 (2), 104-108 (2016). DOI: 10.1016/j.matpr.2016.01.033
  25. V. Krivenkov, S. Goncharov, P. Samokhvalov, A. Sanchez-Iglesias, M. Grzelczak, I. Nabiev, Y. Rakovich. J. Phys. Chem. Lett., 10, 481-486 (2019). DOI: 10.1021/acs.jpclett.8b03549
  26. V. Krivenkov, P. Samokhvalov, M. Zvaigzne, I. Martynov, A. Chistyakov, I. Nabiev. J. Phys. Chem. C, 122, 15761-15771 (2018). DOI: 10.1021/acs.jpcc.8b04544
  27. Y. Li, S. Natakorn, Y. Chen, M. Safar, M. Cunningham, J. Tian, D.D.-U. Li. Front. Phys., 8 (2020). DOI: 10.3389/fphy.2020.576862
  28. F. Gao, P. Bajwa, A. Nguyen, C.D. Heyes. ACS Nano, 11 (3), 2905-2916 (2017). DOI: 10.1021/acsnano.6b08040

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru