Virus diagnostics Using Fabry-Perot Interference Films of Macroporous Silicon
Gonchar K.A. 1, Saushkin N. Yu. 2, Tsynyaykin I.I. 1, Eliseev A. A. 2,3, Gambaryan A.S.4, Samsonova J. V. 2, Osminkina L. A. 1
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
3Department of Material Science, Lomonosov Moscow State University, Moscow, Russia
4Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, Moscow, Russia
Email: k.a.gonchar@gmail.com, osminkina@physics.msu.ru

PDF
In this paper, the possibility of detecting viruses, specifically influenza A virus, based on changes in the spectra of total reflection from macroporous silicon (macro-pSi) films, is demonstrated for the first time. Macro-pSi films with a pore diameter of about 100 nm were produced by electrochemical etching of crystalline silicon substrates. The porosity of the macro-pSi, calculated using the Bruggeman effective medium model, was 75%. Electron microscopy showed that such highly porous films adsorb of 50-100 nm in size viruses on their surface and inside the pores, but the efficiency of adsorption significantly increases when the surface of the nanostructures is functionalized with monoclonal antibodies, providing specific binding of viruses. The reflection spectra of macro-pSi films demonstrate a series of interference fringes, the intensity of which dramatically changes upon virus adsorption. The results obtained demonstrate the possibility of a simple and effective optical method for virus diagnostics using Fabry-Perot interference in macro-pSi films. Keywords: Porous silicon, interference, sensor, antibody, virus.
  1. M. Nirschl, F. Reuter, J. Voros. Biosensors, 1(3), 70 (2011). DOI: 10.3390/bios1030070
  2. G. Shtenberg, E. Segal. Porous silicon optical biosensors. Handbook of Porous Silicon (Springer International Publishing, Cham, Switzerland, 2014). DOI: 10.1007/978-3-319-71381-6_87
  3. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger. Pure \& Appl. Chem., 66(8), 1739 (1994). DOI: 10.1351/pac199466081739
  4. A.G. Cullis, L.T. Canham, P.D.J. Calcott. J. Appl. Phys., 82, 909 (1997). DOI: 10.1063/1.366536
  5. E.A. Konstantinova, Y.V. Ryabchikov, L.A. Osminkina, A.S. Vorontsov, P.K. Kashkarov. Semicond., 38(11), 1344 (2004). DOI:10.1134/1.1823072
  6. M.J. Sailor, E.C. Wu. Adv. Funct. Mat., 19(20), 3195 (2009). DOI: 10.1002/adfm.200900535
  7. V.A. Georgobiani, K.A. Gonchar, E.A. Zvereva, L.A. Osminkina. Phys. Stat. Sol. A, 215(1), 1700565 (2018). DOI: 10.1002/pssa.201700565
  8. A. Jane, R. Dronov, A. Hodges, N.H. Voelcker. Trends in biotech., 27(4), 230 (2009). DOI: 10.1016/j.tibtech.2008.12.004
  9. V.S. Lin, K. Motesharei, K.P. Dancil, M.J. Sailor, M.R. Ghadiri. Science, 278(5339), 840 (1997). DOI:10.1126/science.278.5339.840
  10. M.B. Gongalsky, A.A. Koval, S.N. Schevchenko, K.P. Tamarov, L.A. Osminkina. J. Electr. Soc., 164(12), B581 (2017). DOI: 10.1149/2.1821712jes
  11. N. Massad-Ivanir, G. Shtenberg, E. Segal. J. Vis. Exp., 81 (2013). DOI: 10.3791/50805
  12. N. Massad-Ivanir, G. Shtenberg, N. Raz, C. Gazenbeek, D. Budding, M.P. Bos, E. Segal. Sci. Rep., 6, 38099 (2016). DOI: 10.1038/srep38099
  13. G. Gaur, D.S. Koktysh, S.M. Weiss. Adv. Funct. Mat., 23(29), 3604 (2013). DOI: 10.1002/adfm.201202697
  14. N. Massad-Ivanir, Y. Mirsky, A. Nahor, E. Edrei, L.M. Bonanno-Young, N.B. Dov, A. Sa'ar, E. Segal. Analyst, 139, 3885 (2014). DOI: 10.1039/C4AN00364K
  15. N. Massad-Ivanir, G. Shtenberg, E. Segal. Adv. Exp. Med. Biol., 733, 37 (2012). DOI: 10.1007/978-94-007-2555-3_4
  16. K.A. Gonchar, S.N. Agafilushkina, D.V. Moiseev, I.V. Bozhev, A.A. Manykin, E.A. Kropotkina, A.S. Gambaryan, L.A. Osminkina. Mater. Res. Express, 7, 035002 (2020). DOI: 10.1088/2053-1591/ab7719
  17. M.B. Gongalsky, U.A. Tsurikova, J.V. Samsonova, G.Z. Gvindzhiliiia, K.A. Gonchar, N.Yu. Saushkin, A.A. Kudryavtseva, E.A. Kropotkina, A.S. Gambaryan, L.A. Osminkina. Res. Mat., 6, 100084 (2020). DOI: 10.1016/j.rinma.2020.100084
  18. J. Li, M.J. Sailor. Biosens. Bioelectron., 55, 372 (2014). DOI: 10.1016/j.bios.2013.12.016
  19. B. Rossi. Optics (Addison-Wesley, Reading, MA, USA,1957)
  20. D.A.G. Bruggeman. Ann. Phys. (Leipzig), 416(7), 636 (1935). DOI: 10.1002/andp.19354160705
  21. M.J. Sailor. Porous Silicon in Practice: Preparation, Characterization and Applications (Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2012)
  22. S.Wang, X.Shan, U.Patel, X. Huang, J. Lu, J. Li, N. Tao. PNAS, 107, 16028 (2010). DOI: 10.1073/pnas.1005264107
  23. L.A. Osminkina, S.N. Agafilushkina, E.A. Kropotkina, N.Yu. Saushkin, I.V. Bozhev, S.S. Abramchuk, J.V. Samsonova, A.S. Gambaryan. Bioact. Mat., 7, 39 (2022). DOI: 10.1016/j.bioactmat.2021.06.001

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru