Davidovich M. V.1
1Saratov State University, Saratov, Russia
Email: davidovichmv@info.sgu.ru
Dispersing dissipative homogeneous isotropic local (without spatial dispersion) magnetodielectric media are considered, for which, using Maxwell's equations, balance relations for the momentum of the field-matter system are obtained, momentum fluxes are determined, the pressure of a plane monochromatic wave on the medium layer and the forces acting on small bodies in such a medium are determined. The possibility of negative pressure on the layer in the limitless left medium, as well as on the layer in the limitless right medium with low losses in the case when the electrical losses exceed the magnetic ones, is shown. The pressure on a half-plane or plate with any type of dispersion when a plane monochromatic wave falls on them from a vacuum is always positive. Transparent media and structures with different permeabilities do not experience pressure. A model of a hypothetical Veselago medium in the form of a rarefied plasma of electric and magnetic charges is considered, the rate of energy and momentum transfer in it is found. Keywords: light pressure, photon momentum, dispersion, Abraham-Minkowski contraversion, metamaterial.
- M.V. Davidovich. Phys. Usp., 53, 595-609 (2010). DOI: 10.3367/UFNe.0180.201006e.0623
- R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop. Phys. Rev. A, 79 (2), 023813 (2009). DOI: 10.1103/PhysRevA.79.023813
- H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, N.R. Heckenberg. Advances in Quantum Chemistry, 30, 469-492 (1998). DOI: 10.1016/S0065-3276(08)60523-7
- H.H. Brito. AIP Conference Proceedings, 458, 994-1004 (1999). DOI: 10.1063/1.57710
- N.R. Heckenberg, M.E.J. Friese, T.A. Nieminen, H. Rubinsztein-Dunlop. In: Optical Vortices (Horizons in World Physics 228), ed. by M. Vasnetsov and K. Staliunas (Nova Science Publishers, Commack, New York, 1999) pp. 75-105. DOI: 10.48550/arXiv.physics/0312007
- S. Antoci, L. Mihich. Nuovo Cim., B 115, 77-88 (2000). DOI: 10.48550/arXiv.physics/9912010
- Y.N. Obukhov, F.W. Hehl. Phys. Rev., A, 311, 277-284 (2003). DOI: 10.1016/S0375-9601(03)00503-6
- V.P. Makarov, A.A. Rukhadze. Phys. Usp., 52, 937-943 (2009). DOI: 10.3367/UFNe.0179.200909e.0995
- V.G. Veselago. Sov. Phys. Usp., 10, 509-514 (1968). DOI: 10.1070/PU1968v010n04ABEH003699
- R.A. Silin. Periodicheskie volnovody (Fazis, M., 2002) (in Russian)
- M.V. Davidovich. JETP, 132 (2), 159-176 (2021). DOI: 10.1134/S1063776121020102
- P.A. Belov, V.N. Vasil'ev, K.R. Simovskii. Nauchno-Tekh. Vestn. ITMO, 4 (16) 141-145 (2004) (in Russian)
- P.A. Belov. K. Simovski, S.A. Tretyakov. J. Communications Technology and Electronics, 49 (11), 1199-1207 (2004)
- A.I. Akhiezer, I.A. Akhiezer. Elektromagnetizm i elektromagnitnye volny (Vysshaya Shkola, M., 1985) (in Russian)
- P.N. Prasad. Nanophotonics (John Wiley and Sons, Hoboken, New Jersey, 2004)
- P.W. Milonni. Fast light, slow light and left-handed light (CRC Press, Boca Raton, 2004)
- G.V. Eleftheriades, K.G. Balmain (Ed.). Negative-refraction metamaterials: Fundamental Principles and Applications (IEEE Press, John Wiley \& Sons, Inc., Hoboken, New Jersey, 2005)
- C. Wenshan, V. Shalaev. Optical Metamaterials: Fundamentals and Applications (Springer, Dordrecht, Heidelberg, London, New York, 2009)
- Y. Hao. FDTD Modeling of Metamaterials: Theory and Applications (Artech, 2008)
- J.-M. Lourtioz, H. Benistry, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov. Photonic Crystals. Towards Nanoscale Photonic Devices (Springer, 2005)
- N. Engheta, R.W. Ziolkowski (Ed.). Metamaterials: Physics and Engineering Explorations (IEEE Press, A John Wiley \& Sons, Inc., 2006)
- Z. Jaksic, N. Dalarsson, M. Maksimovic. Microwave Review, 6, 36-49 (2006)
- C. Caloz, T. Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley \& Sons, Inc., N.Y., 2006)
- C. Caloz. In: Microstrip and Printed Antennas: New Trends, Techniques and Applications, ed. by D. Guha, Y.M.M. Antar (John Wiley \& Sons, 2011), pp. 345-386
- P. Markos, C.M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008)
- A.K. Sarychev, V.A. Shalaev. Electrodynamics of Metamaterials (World Scientivic Publishers Co. Pte. Ltd., Singapore, 2007)
- R. Marques, F. Martin, M. Sorolla. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Hoboken, New Jersey: John Wiley \& Sons, Inc., 2008)
- L. Solymar, E. Shamonina. Waves in Metamaterials (Oxford University Press, 2009)
- 25. P. Markos, C.M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008)
- F. Capolino (Ed.). Theory and Phenomena of Metamaterials (CRC Press, Boca Raton, 2009)
- F. Capolino (Ed.). Applications of Metamaterials (CRC Press, Boca Raton, 2009)
- S. Zouhdi, A. Sihvola, A.P. Vinogradov. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer, Dordrech, 2009)
- B.A. Munlc. Metamaterials: Critique and Alternatives (John Wiley, Hoboken, 2009)
- A.P. Vinogradov, A.V. Dorofeenko, S. Zouhdi. Phys. Usp., 51, 485-492 (2008). DOI: 10.1070/PU2008v051n05ABEH006533
- C.R. Simovski. Opt. Spectrosc. 107, 726-753 (2009). DOI: 10.1134/S0030400X09110101
- M.V. Rybin, M.F. Limonov. Phys. Usp., 62, 823-838 (2019). DOI: 10.3367/UFNr.2019.03.038543
- M.V. Davidovich. Phys. Usp., 62, 1173-1207 (2019). DOI: 10.3367/UFNe.2019.08.038643
- M.V. Davidovich. Izv. Sarat. Univ. Ser. Fiz., 11 (1), 42-47 (2011) (in Russian)
- M.V. Davidovich. Zakony sokhraneniya i plotnosti energii i impul'sa elektromagnitnogo polya v dispergiruyushchei srede (Izd. Sarat. Univ., Saratov, 2012) (in Russian)
- M.V. Davidovich. Zakony sokhraneniya i plotnosti energii-impul'sa elektromagnitnogo polya. Energiya, impul's i skorosti ikh perenosa kvazifotonov v dispergiruyushchei srede: Abragama-Minkovskogo kontroversiya (LAP LAMBERT Academic Publishing, Saarbruken, Germany, 2012) (in Russian)
- M.V. Davidovich. Quantum Electronics, 47 (6), 567-579 (2017). DOI: 10.1070/QEL16272
- L.A. Vainshtein. Elektromagnitnye volny (Radio i Svyaz', M., 1988) (in Russian)
- J. Sjchwinger. Science, 165 (3895), 757-761 (1969). DOI: 10.1126/science.165.3895.757
- D.J. Griffiths. Introduction to electrodynamics (Prentice Hall, Upper Saddle River, New Jersey, 1999)
- R.P. Feynman, R.B. Lrigton, M.W. Sands. The Feynman Lectures on Physics (Addison-Wesley Publishing Comp. Inc., Reading, Massachusetts, Palo Alto, London, 1964)
- D.G. Baranov, A.P. Vinogradov, K.R. Simovskii, I. Nefedov, S.A. Tret'yakov. JETP, 114 (4), 568 (2012). DOI: 10.1134/S106377611202001X
- L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984)
- V.V. Kotlyar1, S.S. Stafeev, A.G. Nalimov, A.A. Kovalev. Computer Optics, 43 (5) 714-722 (2019). DOI: 10.18287/2412-6179-2019-43-5-714-722
- J.F. Nye, M.V. Berry. Proc. Royal Soc. London A: Mathematical, Physical and Engineering Sciences, 336 (1605), 165-190 (1974). DOI: 10.1098/rspa.1974.0012
- K.T. Gahagan, G.A. Swartzlander. Opt. Lett., 21 (11), 827-829 (1996). DOI: 10.1364/ol.21.000827
- M. Gecevivcius, R. Drevinskas, M. Beresna, P.G. Kazansky. Appl. Phys. Lett., 104 (23) 231110 (2014). DOI: 10.1063/1.4882418
- N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett. Opt. Lett., 22 (1), 52-54 (1997). DOI: 10.1364/OL.22.000052
- K. Volke-Sepulveda, V. GarcesChvez, S. Chavez-Cerda, J. Arlt, K. Dholakia. J. Optics B: Quantum and Semiclassical Optics, 4 (2), S82-S89 (2002)
- B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T.D. Carozzi, Y.N. Istomin, N.H. Ibragimov, R. Khamitova. Phys. Rev. Lett., 99 (8), 087701 (2007). DOI: 10.1103/PhysRevLett.99.087701
- A. Bandyopadhyay, R.P. Singh. Opt. Commun., 284 (1), 256-261 (2011). DOI: 10.1063/1.3635861
- A. Bandyopadhyay, S. Prabhakar, R.P. Singh. Phys. Lett., A 375 (19), 1926-1929 (2011). DOI: 10.1016/j.physleta.2011.03.044
- B.J. McMorran, A. Agrawal, I.M. Anderson, A.A. Herzing, H.J. Lezec, J.J. McClelland, J. Unguris. Science, 331 (6014), 192-195 (2011). DOI: 10.1126/science.1198804
- V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov. Opt. Lett., 43 (12), 2921-2924 (2018). DOI: 10.1364/OL.43.002921
- V.V. Kotlyar, A.G. Nalimov, A.A. Kovalev. J. Optics, 20 (9), 095603 (2018). DOI: 10.1088/2040-8986/aad606
- V.V. Kotlyar, A.G. Nalimov, S.S. Stafeev. Laser Physics, 28 (12), 126203 (2018). DOI: 10.1088/1555-6611/aae02f
- V.V. Kotlyar, A.G. Nalimov. J. Optics, 20 (7), 075101 (2018). DOI: 10.1088/2040-8986/aac4b3
- B. Richards, E. Wolf. Proc. R. Soc., A 253 (1274) 358-379 (1959). DOI:10.1098/rspa.1959.0200
- G.P. Karman, M.W. Beijersbergen, A. van Duijl, J.P. Woerdman. Opt. Lett., 22 (9), 1503-1505 (1997). DOI: 10.1364/OL.22.001503
- M.V. Berry. J. Mod. Opt., 45 (9), 1845-1858 (1998). DOI: 10.1080/09500349808231706
- A.V. Volyar. Tech. Phys. Lett., 26 (7) 573-575 (2000)
- A.V. Volyar, V.G. Shvedov, T.A. Fadeeva. Opt. Spectrosc., 90 (1), 93-100 (2001)
- M.V. Vasnetsov, V.N. Gorshkov, I.G. Marienko, M.S. Soskin. Opt. Spectrosc., 88 (2) 260-265 (2000). DOI: 10.1134/1.626789
- A.V. Novitsky, D.V. Novitsky. J. Opt. Soc. Am., A 24 (9), 2844-2849 (2007). DOI: 10.1364/JOSAA.24.002844
- S. Sukhov, A. Dogariu. Opt. Lett., 35 (22), 3847-3849 (2010). DOI: 10.1364/OL.35.003847
- C.W. Qiu, D. Palima, A. Novitsky, D. Gao, W. Ding, S.V. Zhukovsky, J. Gluckstad. Nanophotonics, 3 (3), 181-201 (2014). DOI: 10.1515/nanoph-2013-0055
- F.G. Mitri. J. Opt. Soc. Am., A 33 (9), 1661-1667 (2016). DOI: 10.1364/JOSAA.33.001661
- P. Vaveliuk, O. Martinez-Matos. Opt. Express, 20 (24), 26913-26921 (2012). DOI: 10.1364/OE.20.026913
- I. Ronon-Ojeda, F. Soto-Eguibar. Wave Motion, 78, 176-184 (2018). DOI:10.1016/J.WAVEMOTI.2018.02.003
- M.V. Berry. J. Phys. A: Math. Theor., 43 (41), 415302 (2010). DOI: 10.1088/1751-8113/43/41/415302
- V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov. Computer Optics, 42 (3), 408-413 (2018). DOI: 10.18287/2412-6179-2018-42-3-408-413
- V.V. Kotlyar, A.A. Kovalev. Computer Optics, 43 (1), 54-62 (2019). DOI: 10.18287/2412-6179-2019-43-1-54-62
- S.H. Tao, W.M. Lee, X.C. Yuan. Opt. Lett., 28, 1867-1869 (2003). DOI: 10.1364/OL.28.001867
- A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Nature, 412, 313-316 (2001). DOI: 10.1038/35085529
- L. Chen, J. Lei, J. Romero. Light Sci. Appl., 3, e153 (2014). DOI: 10.1038/lsa.2014.34
- J.C. Gutierrez-Vega, C. Lopez-Mariscal. J. Opt., A, 10, 015009 (2008). DOI: 10.1088/1464-4258/10/01/015009
- F.G. Mitri. Opt. Lett., 36, 606-608 (2011). DOI: 10.1364/OL.36.000606
- F.G. Mitri. Optik, 124, 1469-1471 (2013). DOI: 10.1016/j.ijleo.2012.04.024
- F.G. Mitri. Phys. Rev., A, 88, 035804 (2013). DOI: 10.1103/PhysRevA.88.035804
- F.G. Mitri. IEEE Trans., AP, 59, 4375-4379 (2011). DOI: 10.1109/TAP.2011.2164228
- F.G. Mitri. J. Quant. Spectr. Rad. Transfer, 182, 172-179 (2016). DOI: 10.1016/j.jqsrt.2016.05.033
- F.G. Mitri. Phys. Rev., A, 85, 025801 (2012). DOI: 10.1103/PhysRevA.85.025801
- F.G. Mitri. Eur. Phys. J., D, 67, 1-9 (2013). DOI: 10.1140/epjd/e2013-40035-4
- S.R. Mishra. Opt. Commun., 85, 159-161 (1991). DOI: 10.1016/0030-4018(91)90386-r
- F.G. Mitri. Opt. Lett., 36, 766-768 (2011). DOI: 10.1364/OL.36.000766
- S.M. Block. Nature, 360, 493-495 (1992). DOI: 10.1038/360493a0
- S.R. Wilk. Opt. Photon. News, 20 (11) 12-13 (2009)
- S. Sukhov, A. Dogariu. Opt. Lett., 35, 3847-3849 (2010). DOI: 10.1364/OL.35.003847
- S.M. Barnett. J. Opt., B, 4 (7) (2002). DOI: 10.1088/1464-4266/4/2/361
- C. Lopez-Mariscal, D. Burnham, D. Rudd, D. McGloin, J.C. Gutierrez-Vega. Opt. Express, 16, 11411-11422 (2008). DOI: 10.1364/OE.16.011411
- T. Cizmar, M. Siler, P. Zemanek. Appl. Phys., B, 84, 197-203 (2006). DOI: 10.1007/s00340-006-2221-2
- I. Mokhun, R. Khrobatin, A. Mokhun, J. Viktorovskaya. Opt. Appl., 37, 261-277 (2007). DOI: 10.1117/12.679903
- A.V. Novitsky, L.M. Barkovsky. Phys. Rev., A, 79, 033821 (2009). DOI: 10.1103/PhysRevA.79.033821
- J. Chen, J. Ng, K. Ding, K.H. Fung, Z. Lin, C.T. Chan. Sci. Rep., 4, 6386 (2014). DOI: 10.1038/srep06386
- B.A. Knyazev, V.G. Serbo. Phys. Usp., 61, 449-479 (2018). DOI: 10.3367/UFNe.2018.02.038306
- G.T. Silva, T.P. Lobo, F.G. Mitri. Europhys. Lett., 97, 54003 (2012). 10.1209/0295-5075/97/54003
- M.A. Salem, H. Bagci. Opt. Express, 19 (9), 8526-8532 (2011). DOI: 10.1364/OE.19.008526
- G.T. Markov, A.F. Chaplin. Vozbuzhdenie elektromagnitnykh voln (Radio i Svyaz', M., 1983) (in Russian)
- B.Z. Katsenelenbaum. J. Commun. Technol. Electron., 42 (2), 119-120 (1997)
- V.L. Ginzburg. Sov. Phys. Usp., 16 434-439 (1973). DOI: 10.1070/PU1973v016n03ABEH005193
- D.V. Skobel'tsyn. Sov. Phys. Usp., 16 38-401 (1973). DOI: 10.1070/PU1973v016n03ABEH005188
- V.L. Ginzburg, V.A. Ugarov. Sov. Phys. Usp., 19, 94-101 (1976). DOI: 10.1070/PU1976v019n01ABEH005127
- V.I. Pavlov. Sov. Phys. Usp., 21 (2), 171-173 (1978). DOI: 10.1070/PU1978v021n02ABEH005521
- Y.N. Obukhov. Phys. Lett., A, 311, 277-284 (2003). DOI:10.1016/S0375-9601(03)00503-6
- Y.N. Obukhov. Ann. Phys. (Berlin), 17 (9-10), 830-851 (2008). DOI: 10.1002/andp.200852009-1012
- V. Yannopapas, P.G. Galiatsatos. Phys. Rev., A, 77, 043819 (2008). DOI: 10.1103/PhysRevA.77.043819
- V.P. Makarov, A.A. Rukhadze. Phys. Usp., 54, 1285-1296 (2011). DOI: 10.3367/UFNe.0181.201112n.1357
- A. Shevchenko, M. Kaivola. J. Phys. B: At. Mol. Opt. Phys. 44, 175401(1-7) (2011). DOI: 10.1088/0953-4075/44/17/175401
- I.N. Toptygin, K. Levina. Phys. Usp., 59, 141-152 (2016). DOI: 10.3367/UFNe.0186.201602c.0146
- Yu.A. Spirichev. Phys. Usp., 61, 303-306 (2018). DOI: 10.3367/UFNe.2017.11.038255
- V.G. Polevoi, S.M. Rytov. Sov. Phys. Usp., 21 630-638 (1978). DOI: 10.1070/PU1978v021n07ABEH005668
- L.P. Pitaevskii. Sov. Phys. JETP, 12, 1008-1013 (1961)
- Valer Novacu. Introducere in electrodinamica. Teoriile Microscopica si Relativista (Editura Academiei Republicii Populare Romine, 1955)
- C. M ller. The theory of relativity (Clarendon Press, Oxford, 1972)
- A. Einstein, J. Laub. Ann. Phys. (Leipzig), 26, 541-550 (1908). DOI: 10.1002/andp.19083310807
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.