On the negative pressure of light in a dispersing medium
Davidovich M. V.1
1Saratov State University, Saratov, Russia
Email: davidovichmv@info.sgu.ru

PDF
Dispersing dissipative homogeneous isotropic local (without spatial dispersion) magnetodielectric media are considered, for which, using Maxwell's equations, balance relations for the momentum of the field-matter system are obtained, momentum fluxes are determined, the pressure of a plane monochromatic wave on the medium layer and the forces acting on small bodies in such a medium are determined. The possibility of negative pressure on the layer in the limitless left medium, as well as on the layer in the limitless right medium with low losses in the case when the electrical losses exceed the magnetic ones, is shown. The pressure on a half-plane or plate with any type of dispersion when a plane monochromatic wave falls on them from a vacuum is always positive. Transparent media and structures with different permeabilities do not experience pressure. A model of a hypothetical Veselago medium in the form of a rarefied plasma of electric and magnetic charges is considered, the rate of energy and momentum transfer in it is found. Keywords: light pressure, photon momentum, dispersion, Abraham-Minkowski contraversion, metamaterial.
  1. M.V. Davidovich. Phys. Usp., 53, 595-609 (2010). DOI: 10.3367/UFNe.0180.201006e.0623
  2. R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop. Phys. Rev. A, 79 (2), 023813 (2009). DOI: 10.1103/PhysRevA.79.023813
  3. H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, N.R. Heckenberg. Advances in Quantum Chemistry, 30, 469-492 (1998). DOI: 10.1016/S0065-3276(08)60523-7
  4. H.H. Brito. AIP Conference Proceedings, 458, 994-1004 (1999). DOI: 10.1063/1.57710
  5. N.R. Heckenberg, M.E.J. Friese, T.A. Nieminen, H. Rubinsztein-Dunlop. In: Optical Vortices (Horizons in World Physics 228), ed. by M. Vasnetsov and K. Staliunas (Nova Science Publishers, Commack, New York, 1999) pp. 75-105. DOI: 10.48550/arXiv.physics/0312007
  6. S. Antoci, L. Mihich. Nuovo Cim., B 115, 77-88 (2000). DOI: 10.48550/arXiv.physics/9912010
  7. Y.N. Obukhov, F.W. Hehl. Phys. Rev., A, 311, 277-284 (2003). DOI: 10.1016/S0375-9601(03)00503-6
  8. V.P. Makarov, A.A. Rukhadze. Phys. Usp., 52, 937-943 (2009). DOI: 10.3367/UFNe.0179.200909e.0995
  9. V.G. Veselago. Sov. Phys. Usp., 10, 509-514 (1968). DOI: 10.1070/PU1968v010n04ABEH003699
  10. R.A. Silin. Periodicheskie volnovody (Fazis, M., 2002) (in Russian)
  11. M.V. Davidovich. JETP, 132 (2), 159-176 (2021). DOI: 10.1134/S1063776121020102
  12. P.A. Belov, V.N. Vasil'ev, K.R. Simovskii. Nauchno-Tekh. Vestn. ITMO, 4 (16) 141-145 (2004) (in Russian)
  13. P.A. Belov. K. Simovski, S.A. Tretyakov. J. Communications Technology and Electronics, 49 (11), 1199-1207 (2004)
  14. A.I. Akhiezer, I.A. Akhiezer. Elektromagnetizm i elektromagnitnye volny (Vysshaya Shkola, M., 1985) (in Russian)
  15. P.N. Prasad. Nanophotonics (John Wiley and Sons, Hoboken, New Jersey, 2004)
  16. P.W. Milonni. Fast light, slow light and left-handed light (CRC Press, Boca Raton, 2004)
  17. G.V. Eleftheriades, K.G. Balmain (Ed.). Negative-refraction metamaterials: Fundamental Principles and Applications (IEEE Press, John Wiley \& Sons, Inc., Hoboken, New Jersey, 2005)
  18. C. Wenshan, V. Shalaev. Optical Metamaterials: Fundamentals and Applications (Springer, Dordrecht, Heidelberg, London, New York, 2009)
  19. Y. Hao. FDTD Modeling of Metamaterials: Theory and Applications (Artech, 2008)
  20. J.-M. Lourtioz, H. Benistry, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov. Photonic Crystals. Towards Nanoscale Photonic Devices (Springer, 2005)
  21. N. Engheta, R.W. Ziolkowski (Ed.). Metamaterials: Physics and Engineering Explorations (IEEE Press, A John Wiley \& Sons, Inc., 2006)
  22. Z. Jaksic, N. Dalarsson, M. Maksimovic. Microwave Review, 6, 36-49 (2006)
  23. C. Caloz, T. Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley \& Sons, Inc., N.Y., 2006)
  24. C. Caloz. In: Microstrip and Printed Antennas: New Trends, Techniques and Applications, ed. by D. Guha, Y.M.M. Antar (John Wiley \& Sons, 2011), pp. 345-386
  25. P. Markos, C.M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008)
  26. A.K. Sarychev, V.A. Shalaev. Electrodynamics of Metamaterials (World Scientivic Publishers Co. Pte. Ltd., Singapore, 2007)
  27. R. Marques, F. Martin, M. Sorolla. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (Hoboken, New Jersey: John Wiley \& Sons, Inc., 2008)
  28. L. Solymar, E. Shamonina. Waves in Metamaterials (Oxford University Press, 2009)
  29. 25. P. Markos, C.M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008)
  30. F. Capolino (Ed.). Theory and Phenomena of Metamaterials (CRC Press, Boca Raton, 2009)
  31. F. Capolino (Ed.). Applications of Metamaterials (CRC Press, Boca Raton, 2009)
  32. S. Zouhdi, A. Sihvola, A.P. Vinogradov. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer, Dordrech, 2009)
  33. B.A. Munlc. Metamaterials: Critique and Alternatives (John Wiley, Hoboken, 2009)
  34. A.P. Vinogradov, A.V. Dorofeenko, S. Zouhdi. Phys. Usp., 51, 485-492 (2008). DOI: 10.1070/PU2008v051n05ABEH006533
  35. C.R. Simovski. Opt. Spectrosc. 107, 726-753 (2009). DOI: 10.1134/S0030400X09110101
  36. M.V. Rybin, M.F. Limonov. Phys. Usp., 62, 823-838 (2019). DOI: 10.3367/UFNr.2019.03.038543
  37. M.V. Davidovich. Phys. Usp., 62, 1173-1207 (2019). DOI: 10.3367/UFNe.2019.08.038643
  38. M.V. Davidovich. Izv. Sarat. Univ. Ser. Fiz., 11 (1), 42-47 (2011) (in Russian)
  39. M.V. Davidovich. Zakony sokhraneniya i plotnosti energii i impul'sa elektromagnitnogo polya v dispergiruyushchei srede (Izd. Sarat. Univ., Saratov, 2012) (in Russian)
  40. M.V. Davidovich. Zakony sokhraneniya i plotnosti energii-impul'sa elektromagnitnogo polya. Energiya, impul's i skorosti ikh perenosa kvazifotonov v dispergiruyushchei srede: Abragama-Minkovskogo kontroversiya (LAP LAMBERT Academic Publishing, Saarbruken, Germany, 2012) (in Russian)
  41. M.V. Davidovich. Quantum Electronics, 47 (6), 567-579 (2017). DOI: 10.1070/QEL16272
  42. L.A. Vainshtein. Elektromagnitnye volny (Radio i Svyaz', M., 1988) (in Russian)
  43. J. Sjchwinger. Science, 165 (3895), 757-761 (1969). DOI: 10.1126/science.165.3895.757
  44. D.J. Griffiths. Introduction to electrodynamics (Prentice Hall, Upper Saddle River, New Jersey, 1999)
  45. R.P. Feynman, R.B. Lrigton, M.W. Sands. The Feynman Lectures on Physics (Addison-Wesley Publishing Comp. Inc., Reading, Massachusetts, Palo Alto, London, 1964)
  46. D.G. Baranov, A.P. Vinogradov, K.R. Simovskii, I. Nefedov, S.A. Tret'yakov. JETP, 114 (4), 568 (2012). DOI: 10.1134/S106377611202001X
  47. L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984)
  48. V.V. Kotlyar1, S.S. Stafeev, A.G. Nalimov, A.A. Kovalev. Computer Optics, 43 (5) 714-722 (2019). DOI: 10.18287/2412-6179-2019-43-5-714-722
  49. J.F. Nye, M.V. Berry. Proc. Royal Soc. London A: Mathematical, Physical and Engineering Sciences, 336 (1605), 165-190 (1974). DOI: 10.1098/rspa.1974.0012
  50. K.T. Gahagan, G.A. Swartzlander. Opt. Lett., 21 (11), 827-829 (1996). DOI: 10.1364/ol.21.000827
  51. M. Gecevivcius, R. Drevinskas, M. Beresna, P.G. Kazansky. Appl. Phys. Lett., 104 (23) 231110 (2014). DOI: 10.1063/1.4882418
  52. N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett. Opt. Lett., 22 (1), 52-54 (1997). DOI: 10.1364/OL.22.000052
  53. K. Volke-Sepulveda, V. GarcesChvez, S. Chavez-Cerda, J. Arlt, K. Dholakia. J. Optics B: Quantum and Semiclassical Optics, 4 (2), S82-S89 (2002)
  54. B. Thide, H. Then, J. Sjoholm, K. Palmer, J. Bergman, T.D. Carozzi, Y.N. Istomin, N.H. Ibragimov, R. Khamitova. Phys. Rev. Lett., 99 (8), 087701 (2007). DOI: 10.1103/PhysRevLett.99.087701
  55. A. Bandyopadhyay, R.P. Singh. Opt. Commun., 284 (1), 256-261 (2011). DOI: 10.1063/1.3635861
  56. A. Bandyopadhyay, S. Prabhakar, R.P. Singh. Phys. Lett., A 375 (19), 1926-1929 (2011). DOI: 10.1016/j.physleta.2011.03.044
  57. B.J. McMorran, A. Agrawal, I.M. Anderson, A.A. Herzing, H.J. Lezec, J.J. McClelland, J. Unguris. Science, 331 (6014), 192-195 (2011). DOI: 10.1126/science.1198804
  58. V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov. Opt. Lett., 43 (12), 2921-2924 (2018). DOI: 10.1364/OL.43.002921
  59. V.V. Kotlyar, A.G. Nalimov, A.A. Kovalev. J. Optics, 20 (9), 095603 (2018). DOI: 10.1088/2040-8986/aad606
  60. V.V. Kotlyar, A.G. Nalimov, S.S. Stafeev. Laser Physics, 28 (12), 126203 (2018). DOI: 10.1088/1555-6611/aae02f
  61. V.V. Kotlyar, A.G. Nalimov. J. Optics, 20 (7), 075101 (2018). DOI: 10.1088/2040-8986/aac4b3
  62. B. Richards, E. Wolf. Proc. R. Soc., A 253 (1274) 358-379 (1959). DOI:10.1098/rspa.1959.0200
  63. G.P. Karman, M.W. Beijersbergen, A. van Duijl, J.P. Woerdman. Opt. Lett., 22 (9), 1503-1505 (1997). DOI: 10.1364/OL.22.001503
  64. M.V. Berry. J. Mod. Opt., 45 (9), 1845-1858 (1998). DOI: 10.1080/09500349808231706
  65. A.V. Volyar. Tech. Phys. Lett., 26 (7) 573-575 (2000)
  66. A.V. Volyar, V.G. Shvedov, T.A. Fadeeva. Opt. Spectrosc., 90 (1), 93-100 (2001)
  67. M.V. Vasnetsov, V.N. Gorshkov, I.G. Marienko, M.S. Soskin. Opt. Spectrosc., 88 (2) 260-265 (2000). DOI: 10.1134/1.626789
  68. A.V. Novitsky, D.V. Novitsky. J. Opt. Soc. Am., A 24 (9), 2844-2849 (2007). DOI: 10.1364/JOSAA.24.002844
  69. S. Sukhov, A. Dogariu. Opt. Lett., 35 (22), 3847-3849 (2010). DOI: 10.1364/OL.35.003847
  70. C.W. Qiu, D. Palima, A. Novitsky, D. Gao, W. Ding, S.V. Zhukovsky, J. Gluckstad. Nanophotonics, 3 (3), 181-201 (2014). DOI: 10.1515/nanoph-2013-0055
  71. F.G. Mitri. J. Opt. Soc. Am., A 33 (9), 1661-1667 (2016). DOI: 10.1364/JOSAA.33.001661
  72. P. Vaveliuk, O. Martinez-Matos. Opt. Express, 20 (24), 26913-26921 (2012). DOI: 10.1364/OE.20.026913
  73. I. Ronon-Ojeda, F. Soto-Eguibar. Wave Motion, 78, 176-184 (2018). DOI:10.1016/J.WAVEMOTI.2018.02.003
  74. M.V. Berry. J. Phys. A: Math. Theor., 43 (41), 415302 (2010). DOI: 10.1088/1751-8113/43/41/415302
  75. V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov. Computer Optics, 42 (3), 408-413 (2018). DOI: 10.18287/2412-6179-2018-42-3-408-413
  76. V.V. Kotlyar, A.A. Kovalev. Computer Optics, 43 (1), 54-62 (2019). DOI: 10.18287/2412-6179-2019-43-1-54-62
  77. S.H. Tao, W.M. Lee, X.C. Yuan. Opt. Lett., 28, 1867-1869 (2003). DOI: 10.1364/OL.28.001867
  78. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Nature, 412, 313-316 (2001). DOI: 10.1038/35085529
  79. L. Chen, J. Lei, J. Romero. Light Sci. Appl., 3, e153 (2014). DOI: 10.1038/lsa.2014.34
  80. J.C. Gutierrez-Vega, C. Lopez-Mariscal. J. Opt., A, 10, 015009 (2008). DOI: 10.1088/1464-4258/10/01/015009
  81. F.G. Mitri. Opt. Lett., 36, 606-608 (2011). DOI: 10.1364/OL.36.000606
  82. F.G. Mitri. Optik, 124, 1469-1471 (2013). DOI: 10.1016/j.ijleo.2012.04.024
  83. F.G. Mitri. Phys. Rev., A, 88, 035804 (2013). DOI: 10.1103/PhysRevA.88.035804
  84. F.G. Mitri. IEEE Trans., AP, 59, 4375-4379 (2011). DOI: 10.1109/TAP.2011.2164228
  85. F.G. Mitri. J. Quant. Spectr. Rad. Transfer, 182, 172-179 (2016). DOI: 10.1016/j.jqsrt.2016.05.033
  86. F.G. Mitri. Phys. Rev., A, 85, 025801 (2012). DOI: 10.1103/PhysRevA.85.025801
  87. F.G. Mitri. Eur. Phys. J., D, 67, 1-9 (2013). DOI: 10.1140/epjd/e2013-40035-4
  88. S.R. Mishra. Opt. Commun., 85, 159-161 (1991). DOI: 10.1016/0030-4018(91)90386-r
  89. F.G. Mitri. Opt. Lett., 36, 766-768 (2011). DOI: 10.1364/OL.36.000766
  90. S.M. Block. Nature, 360, 493-495 (1992). DOI: 10.1038/360493a0
  91. S.R. Wilk. Opt. Photon. News, 20 (11) 12-13 (2009)
  92. S. Sukhov, A. Dogariu. Opt. Lett., 35, 3847-3849 (2010). DOI: 10.1364/OL.35.003847
  93. S.M. Barnett. J. Opt., B, 4 (7) (2002). DOI: 10.1088/1464-4266/4/2/361
  94. C. Lopez-Mariscal, D. Burnham, D. Rudd, D. McGloin, J.C. Gutierrez-Vega. Opt. Express, 16, 11411-11422 (2008). DOI: 10.1364/OE.16.011411
  95. T. Cizmar, M. Siler, P. Zemanek. Appl. Phys., B, 84, 197-203 (2006). DOI: 10.1007/s00340-006-2221-2
  96. I. Mokhun, R. Khrobatin, A. Mokhun, J. Viktorovskaya. Opt. Appl., 37, 261-277 (2007). DOI: 10.1117/12.679903
  97. A.V. Novitsky, L.M. Barkovsky. Phys. Rev., A, 79, 033821 (2009). DOI: 10.1103/PhysRevA.79.033821
  98. J. Chen, J. Ng, K. Ding, K.H. Fung, Z. Lin, C.T. Chan. Sci. Rep., 4, 6386 (2014). DOI: 10.1038/srep06386
  99. B.A. Knyazev, V.G. Serbo. Phys. Usp., 61, 449-479 (2018). DOI: 10.3367/UFNe.2018.02.038306
  100. G.T. Silva, T.P. Lobo, F.G. Mitri. Europhys. Lett., 97, 54003 (2012). 10.1209/0295-5075/97/54003
  101. M.A. Salem, H. Bagci. Opt. Express, 19 (9), 8526-8532 (2011). DOI: 10.1364/OE.19.008526
  102. G.T. Markov, A.F. Chaplin. Vozbuzhdenie elektromagnitnykh voln (Radio i Svyaz', M., 1983) (in Russian)
  103. B.Z. Katsenelenbaum. J. Commun. Technol. Electron., 42 (2), 119-120 (1997)
  104. V.L. Ginzburg. Sov. Phys. Usp., 16 434-439 (1973). DOI: 10.1070/PU1973v016n03ABEH005193
  105. D.V. Skobel'tsyn. Sov. Phys. Usp., 16 38-401 (1973). DOI: 10.1070/PU1973v016n03ABEH005188
  106. V.L. Ginzburg, V.A. Ugarov. Sov. Phys. Usp., 19, 94-101 (1976). DOI: 10.1070/PU1976v019n01ABEH005127
  107. V.I. Pavlov. Sov. Phys. Usp., 21 (2), 171-173 (1978). DOI: 10.1070/PU1978v021n02ABEH005521
  108. Y.N. Obukhov. Phys. Lett., A, 311, 277-284 (2003). DOI:10.1016/S0375-9601(03)00503-6
  109. Y.N. Obukhov. Ann. Phys. (Berlin), 17 (9-10), 830-851 (2008). DOI: 10.1002/andp.200852009-1012
  110. V. Yannopapas, P.G. Galiatsatos. Phys. Rev., A, 77, 043819 (2008). DOI: 10.1103/PhysRevA.77.043819
  111. V.P. Makarov, A.A. Rukhadze. Phys. Usp., 54, 1285-1296 (2011). DOI: 10.3367/UFNe.0181.201112n.1357
  112. A. Shevchenko, M. Kaivola. J. Phys. B: At. Mol. Opt. Phys. 44, 175401(1-7) (2011). DOI: 10.1088/0953-4075/44/17/175401
  113. I.N. Toptygin, K. Levina. Phys. Usp., 59, 141-152 (2016). DOI: 10.3367/UFNe.0186.201602c.0146
  114. Yu.A. Spirichev. Phys. Usp., 61, 303-306 (2018). DOI: 10.3367/UFNe.2017.11.038255
  115. V.G. Polevoi, S.M. Rytov. Sov. Phys. Usp., 21 630-638 (1978). DOI: 10.1070/PU1978v021n07ABEH005668
  116. L.P. Pitaevskii. Sov. Phys. JETP, 12, 1008-1013 (1961)
  117. Valer Novacu. Introducere in electrodinamica. Teoriile Microscopica si Relativista (Editura Academiei Republicii Populare Romine, 1955)
  118. C. M ller. The theory of relativity (Clarendon Press, Oxford, 1972)
  119. A. Einstein, J. Laub. Ann. Phys. (Leipzig), 26, 541-550 (1908). DOI: 10.1002/andp.19083310807

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru