Continuum pulse width in different multibubble sonoluminescence spectra regions determined by correlation method
Kazachek M. V.1, Gordeychuk T. V.1
1V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: tanya@poi.dvo.ru
The time-correlated photon counting method was used for determining the width of light pulses in different spectral regions of multibubble sonoluminescence from water and NaCl, KCl, LiCl, CaCl2 aqueous solutions of various concentrations. The pulse width has the same value for all wavelengths and for all spectra in those regions containing only continuum of emission. The result does not support black body emission as an immediate source of continuum emission. The observed comparability of continuum intensities for shortwave and longwavelength spectral regions also does not fit within the black body model. Keywords: sonoluminescence, optical pulse width, correlation method.
- T.V. Gordeychuk, M.V. Kazachek. Opt. Spectrosc., 128 (10), 1602 (2020). DOI: 10.1134/S0030400X20100124
- B. Gompf, R. Gunter, G. Nick, R. Pecha, W. Eisenmenger. Phys. Rev. Lett., 79 (7), 1405 (1997). DOI: 10.1103/PhysRevLett.79.1405
- R.A. Hiller, S.J. Putterman, K.R. Weninger. Phys. Rev. Lett., 80 (5), 1090 (1998). DOI: 10.1103/PhysRevLett.80.1090
- M.J. Moran, D. Sweider. Phys. Rev. Lett., 80 (22), 4987 (1998). DOI: 10.1103/PhysRevLett.80.4987
- M. Brenner, S. Hilgenfeldt, D. Lohse. Rev. Mod. Phys., 74, 425 (2002). DOI: 10.1103/RevModPhys.74.425
- J. Rooze, E.V. Rebrov, J.C. Schouten, J.T.F. Keurentjes. Ultrason. Sonochem., 20, 1 (2013). DOI: 10.1016/j.ultsonch.2012.04.013
- K. Yasui. Phys. Rev. Lett., ( 83 (21), 4297 (1999). DOI: 10.1103/PhysRevLett.83.4297
- Y.T. Didenko, T.V. Gordeychuk. Phys. Rev. Lett., 84 (21), 5640 (2000). DOI: 10.1103/PhysRevLett.84.5640
- Y.T. Didenko, W.B. McNamara III, K.S. Suslick. Phys. Rev. Lett., 84 (4), 777 (2000). DOI: 10.1103/PhysRevLett.84.777
- V.Q. Vuong, A.J. Szeri. Phys. Fluids, 8 (9), 2354 (1996). DOI: 10.1063/1.869131
- J. Schwinger. In: Proc. Natl. Acad. Sci. USA, 90, 958 (1993)
- W.C. Moss, D.A. Young, J.A. Harte, J.L. Levatin, B.F. Rozsnyai, G.B. Zimmerman, I.H. Zimmerman. Phys. Rev. E, 59, 2986 (1999). DOI: 10.1103/PhysRevE.59.2986
- S. Hilgenfeldt, S. Grossmann, D. Lohse. Nature (London), 398, 402 (1999). DOI: 10.1038/18842
- D.J. Flannigan, K.S. Suslick. Phys. Rev. Lett., 95, 044301 (2005). DOI: 10.1103/PhysRevLett.95.044301
- T.V. Gordeychuk, M.V. Kazachek. Photonics Russ., 17 (1), 72 (2023). DOI: 10.22184/1993-7296.FRos.2023.17.1.72.76
- M.V. Kazachek, T.V. Gordeychuk. Tech. Phys. Lett., 46 (3), 263 (2020). DOI: 10.1134/S1063785020030232
- M.V. Kazachek, T.V. Gordeychuk. Instrum. Exp. Tech., 62 (1), 26 (2019). DOI: 10.1134/S0020441219010081
- I. Ko, H.-Y. Kwak. J. Phys. Soc. Jap., 79 (12), 124401 (2010). DOI: 10.1143/JPSJ.79.124401
- T.V. Gordeychuk, M.V. Kazachek. Russ. J. Phys. Chem., 97 (5), 902 (2023). DOI: 10.1134/S0036024423050102
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.