Ab initio Calculations of the Electronic Structure of the Doublet and Quartet States of the Rubidium Trimer
Bormotova E.A.
1, Likharev A.S.
1, Stolyarov A.V.
11Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
Email: bormotova.e.a@gmail.com, avstol@gmail.com
Systematic quantum chemical calculations were performed for the ground and a number of low-lying electronically excited doublet and quartet states of the rubidium trimer molecule. The obtained potential energy surfaces (PES), spin-orbit couplings (SOC) and electronic transition dipole moments (ETDM) can be useful for optimizing paths for laser synthesis, cooling and manipulation of stable ensembles of Rb3 molecules at ultralow temperatures. Ab initio calculations of the electronic structure of the homonuclear Rb3 molecule, in linear, isosceles triangle and equilateral triangle geometries, were performed using the multi-reference configuration interaction method, taking into account single and double excitations (MR-CISD) and with explicit dynamic correlation of only the three valence electrons. The structure of each atom was approximated using a nine-electron effective core potential (ECP28MDF), and molecular orbitals (MOs) were optimized using the spin averaged (over doublet and quartet states) multi-configuration self-consistent field (SA-CASSCF) method. Core-valence correlations between twenty-four subvalence electrons located on doubly occupied MOs and three valence electrons were implicitly taken into account using a one-electron angular momentum-independent Muller-Mayer core polarization potential (CPP). As a result of topological investigations at over 35,000 points, two dimensional PES, SOC, and ETDM functions were obtained and the geometric parameters Rb3 were found at which the most intense vertical transitions and the maximum influence of the SOC are expected. Keywords: ultracold molecules, molecular electronic structure, excited states, spin-orbit coupling, transition probabilities, Rubidium.
- C. Giese, F. Stienkemeier, M. Mudrich, A.W. Hauser, W.E. Ernst. Phys. Chem. Chem. Phys., 13 (42), 18769-18780 (2011). DOI: 10.1039/c1cp21191a
- A.W. Hauser, W.E. Ernst. Phys. Chem. Chem. Phys., 13 (42), 18762-18768 (2011). DOI: 10.1039/c1cp21163c
- P. Soldan. J. Chem. Phys., 132 (23), 234-308 (2010). DOI: 10.1063/1.3455710
- A.W. Hauser, J.V. Pototschnig, W.E. Ernst. Chem. Phys., 460, 2-13 (2015). DOI: 10.1016/j.chemphys.2015.07.027
- E.A. Pazyuk, A.V. Zaitsevskii, A.V. Stolyarov, M. Tamanis, R. Ferber. Russian Chemical Reviews, 84 (10), 1001 (2015). DOI: 10.1070/RCR4534
- I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E.A. Pazyuk, A.V. Stolyarov. Phys. Rev. A, 85, 062520 (2012). DOI: 10.1103/PhysRevA.85.062520
- A.Stolyarov. Laser Synthesis of Ultra-Cold Molecules: From Design to Production (Springer International Publishing, 2017), pp. 169177. DOI: 10.1007/978-3-319-52431-3_16
- A.A. Buchachenko, A.V. Stolyarov, M.M. Szczesniak, G. Challasinski. J. Chem. Phys., 137 (11), 114305 (2012). DOI: 10.1063/1.4752740
- M. Tomza, K.W. Madison, R. Moszynski, R.V. Krems. Phys. Rev. A, 88, 050701(R) (2013). DOI: 10.1103/PhysRevA.88.050701
- P. Jasik, J. Kozicki, T. Kilich, J.E. Sienkiewicz, N.E. Henriksen. Phys. Chem. Chem. Phys., 20 (27), 18663-18670 (2018). DOI: 10.1039/c8cp02551g
- M.D. Frye, J.M. Hutson. New J. Phys., 23 (12), 125008 (2021). DOI: 10.1088/1367-2630/ac38
- P.D. Gregory, M.D. Frye, J.A. Blackmore, E.M. Bridge, R. Sawant, J.M. Hutson, S.L. Cornish. Nat. Commun., 10 (1), 3104 (2019). DOI: 10.1038/s41467-019-11033-y
- J. Schnabel, T. Kampschulte, S. Rupp, J.H. Denschlag, A. Kohn. Phys. Rev. A, 103 (2), 022820 (2021). DOI: 10.1103/PhysRevA.103.022820
- G. Aubock, J. Nagl, C. Callegari, W.E. Ernst. J. Chem. Phys., 129 (11), 1-10 (2008). DOI: 10.1063/1.2976765
- A.W. Hauser, G. Aubock, C. Callegari, W.E. Ernst. J. Chem. Phys., 132 (16), 164310 (2010). DOI: 10.1063/1.3394015
- J. Nagl, G. Aubock, A.W. Hauser, O. Allard, C. Callegari, W.E. Ernst. J. Chem. Phys., 128 (15), 1-9 (2008). DOI: 10.1063/1.2906120
- J. Nagl, G. Aubock, A.W. Hauser, O. Allard, C. Callegari, W.E. Ernst. Phys. Rev. Lett., 100 (6), 1-4 (2008). DOI: 10.1103/PhysRevLett.100.063001
- I.B. Bersuker. The Jahn-Teller Eect and Vibronic Interactions in Modern Chemistry. Modern Inorganic Chemistry (Plenum Press, New York, 1984), p. 371. DOI: 10.1007/978-1-4613-2653-3
- A.W. Hauser, C. Callegari, P. Soldan, W.E. Ernst. Chem. Phys., 375 (1), 73-84 (2010). DOI: 10.1016/j.chemphys.2010.07.025
- W. Muller, J. Flesch, W. Meyer. J. Chem. Phys., 80, 3297 (1984). DOI: 10.1063/1.447083
- E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov. Phys. Chem. Chem. Phys., 20 (3), 1889-1896 (2018). DOI: 10.1039/C7CP05548J
- S.V. Kozlov, E.A. Bormotova, A.A. Medvedev, E.A. Pazyuk, A.V. Stolyarov, A. Zaitsevskii. Phys. Chem. Chem. Phys., 22, 2295-2306 (2020). DOI: 10.1039/C9CP06421D
- E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov, I. Majewska, R. Moszynsky. Phys. Chem. Chem. Phys., 23 (9), 5187-5198 (2021). DOI: 10.1039/D0CP06487D
- E.A. Bormotova, S.V. Kozlov, E.A. Pazyuk, A.V. Stolyarov, W. Skomorowski, I. Majewska, R. Moszynski. Phys. Rev. A, 99 (1), 12507 (2019). DOI: 10.1103/PhysRevA.99.012507
- E.A. Pazyuk, E. Revina, A.V. Stolyarov. JQSRT, 177, 283-290 (2016). DOI: 10.1016/j.jqsrt.2016.01.004
- E.A. Pazyuk, E.I. Revina, A.V. Stolyarov. Chem. Phys., 462, 51-56 (2015). DOI: 10.1016/j.chemphys.2015.07.018
- V. Krumins, A. Kruzins, M. Tamanis, R. Ferber, V.V. Meshkov, E.A. Pazyuk, A.V. Stolyarov, A. Pashov. J. Chem. Phys., 156 (11), 114305 (2022). DOI: 10.1063/5.0082309
- V. Krumins, A. Kruzins, M. Tamanis, R. Ferber, A. Pashov, A.V. Oleynichenko, A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov. JQSRT, 256, 107291 (2020). DOI: 10.1016/j.jqsrt.2020.107291
- I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll. J. Chem. Phys., 122 (10), 104103 (2005). DOI: 10.1063/1.1856451
- H. Werner, P. Knowles, G. Knizia, F. Manby, M. Schutz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, et al. Molpro, version 2010.1, a package of ab initio programs (2010). ihttp://www.molpro.net
- J. Mitroy, M.S. Safronova, C.W. Clark. J. Phys. B, 43 (20), 202001 (2010). DOI: 10.1088/0953-4075/43/20/202001
- A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database, [https://physics.nist.gov/asd]. NIST, Gaithersburg, MD. (2023)
- J.Y. Seto, R.J. Le Roy, J. Verges, C. Amiot. J. Chem. Phys., 113 (8), 3067-3076 (2000). DOI: 10.1063/1.1286979
- W. Jastrzebski, P. Kowalczyk, J. Szczepkowski, A.R. Allouche, P. Crozet, A.J. Ross. J. Chem. Phys., 143 (4), 044308 (2015). DOI: 10.1063/1.4927225
- H. Kato. B. Chem. Soc. Jpn., 66 (11), 3203-3234 (1993). DOI: 10.1246/bcsj.66.3203
- A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov, O. Docenko, I. Klincare, O. Nikolayeva, M. Auzinsh, M. Tamanis, R. Ferber. Phys. Rev. A, 71 (1), 012510 (2005). DOI: 10.1103/PhysRevA.71.012510
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.